PeriodicTableManager.ipynb

In [1]:
from xv.chemistry.physical import PeriodicTableManager
In [2]:
ke = PeriodicTableManager()
ke
Out[2]:
1988343063408@PeriodicTableManager

Drawing periodic table and other properties of elements


Minimum Grade: 6
Maximum Grade: 12


Examples
--------
ke = ElementsManager()
ke

ke.printProblemTypes()
ke.helpProblemType('PROBLEM_TEMPLATE_NAME')

ke.getRandomProblem()
ke.getRandomProblem(problem_type = 0)
...

ke.printProblem()
ke.printAnswer()
ke.printSolution()


ke.pth #the periodic table helper
ke.pth.elements #the periodic table helper


#to get columns names
ke.pth.get_column_names()


doc_style: xv_doc

In [3]:
ke.printProblemTypes()
0. _problem_electronic_config
1. _problem_draw_periodic_table
2. _problem_list_periodic_table_properties
3. _problem_draw_periodic_table_with_property
4. _problem_periodic_table_liquid
5. _problem_periodic_table_gases
6. _problem_periodic_table_is_radioactive
7. _problem_plot_a_property
8. _problem_atomic_number_vs_atomic_radius
9. _problem_atomic_number_vs_covalent_radius
10. _problem_atomic_number_vs_metallic_radius
11. _problem_atomic_number_vs_atomic_volume
12. _problem_atomic_number_vs_volume_and_density
13. _problem_atomic_number_vs_affinity
14. _problem_atomic_number_vs_gas_basicity
15. _problem_atomic_number_vs_thermal_conductivity
16. _problem_atomic_number_vs_mp_bp
17. _problem_atomic_number_vs_heats
18. _problem_atomic_number_vs_abundance
19. _problem_list_lattice_structure
20. _problem_elements_descriptions
In [4]:
from IPython.display import HTML
n = len(ke._problemTemplates)
max_loop = 1
for j in range(0, max_loop):
    for i in range(n):
        problem_type = i
        display(HTML(f"<h2>problem_type: {problem_type}/{n-1} (loop {j}/{max_loop-1})</h2>"))
        ke.getRandomProblem(problem_type = problem_type, verbose = True)
        display(ke.printProblem())

        display(HTML(f"<h6>Answer:</h6>"))
        display(ke.printAnswer())

        display(HTML(f"<h6>Solution:</h6>"))
        display(ke.printSolution())
        pass

problem_type: 0/20 (loop 0/0)

Problem Template: _problem_electronic_config

Write the following for the atom with atomic number 64:
1. Electronic configuration
2. Largest noble gas core
3. Electronic configuration form with noble gas as core
4. Valence electrons
5. Maximum number of shells
6. Last subshell
7. Electronic configurations of its positive ions
8. Electrons per shell
Answer:
Atomic number: 64

Name: Gadolinium

Note:It does not follow Madelung energy ordering rule, also called the n + l rule or aufbau approximation rule.

1. Electronic configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s2

2. Largest noble gas core: Xe: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6

3. Electronic configuration form with noble gas as core: [Xe] 4f7 5d1 6s2

4. Valence electrons: 6s2 4f7 5d1

5. Maximum number of shells: 6

6. Last subshell: $6s^{2}$

7. Electronic configurations of its positive ions:
    $Gd^{1+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s1
    $Gd^{2+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1
    $Gd^{3+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7
    $Gd^{4+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f6
    $Gd^{5+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f5
    $Gd^{6+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f4
    $Gd^{7+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f3
    $Gd^{8+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f2
    $Gd^{9+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f1
    $Gd^{10+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
    $Gd^{11+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p5

8. Electrons per shell:
    K: 2
    L: 8
    M: 18
    N: 25
    O: 9
    P: 2
Solution:
Atomic number: 64

Name: Gadolinium

Note:It does not follow Madelung energy ordering rule, also called the n + l rule or aufbau approximation rule.

1. Electronic configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s2

2. Largest noble gas core: Xe: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6

3. Electronic configuration form with noble gas as core: [Xe] 4f7 5d1 6s2

4. Valence electrons: 6s2 4f7 5d1

5. Maximum number of shells: 6

6. Last subshell: $6s^{2}$

7. Electronic configurations of its positive ions:
    $Gd^{1+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s1
    $Gd^{2+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1
    $Gd^{3+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7
    $Gd^{4+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f6
    $Gd^{5+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f5
    $Gd^{6+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f4
    $Gd^{7+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f3
    $Gd^{8+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f2
    $Gd^{9+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f1
    $Gd^{10+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
    $Gd^{11+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p5

8. Electrons per shell:
    K: 2
    L: 8
    M: 18
    N: 25
    O: 9
    P: 2

problem_type: 1/20 (loop 0/0)

Problem Template: _problem_draw_periodic_table
Draw periodic table with atomic_weight
Answer:
Click here to see periodic table.
Solution:

#Code



from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os


# output inline
output_notebook()


ptable_elements = fetch_table('elements')

ptable_output = periodic_plot(ptable_elements,
attribute='atomic_weight',
colorby='attribute',
title="atomic_weight"
)

show(ptable_output)


Bokeh Plot

problem_type: 2/20 (loop 0/0)

Problem Template: _problem_list_periodic_table_properties

Define the following periodic table properties:
1. abundance_crust
2. abundance_sea
3. atomic_number
4. atomic_radius
5. atomic_radius_rahm
6. atomic_volume
7. atomic_weight
8. atomic_weight_uncertainty
9. boiling_point
10. c6
11. c6_gb
12. covalent_radius_bragg
13. covalent_radius_cordero
14. covalent_radius_pyykko
15. covalent_radius_pyykko_double
16. covalent_radius_pyykko_triple
17. density
18. dipole_polarizability
19. dipole_polarizability_unc
20. discovery_year
21. electron_affinity
22. en_allen
23. en_ghosh
24. en_pauling
25. evaporation_heat
26. fusion_heat
27. gas_basicity
28. glawe_number
29. group_id
30. heat_of_formation
31. is_radioactive
32. lattice_constant
33. melting_point
34. mendeleev_number
35. metallic_radius
36. metallic_radius_c12
37. molar_heat_capacity
38. period
39. pettifor_number
40. proton_affinity
41. series_id
42. specific_heat_capacity
43. thermal_conductivity
44. vdw_radius
45. vdw_radius_alvarez
46. vdw_radius_batsanov
47. vdw_radius_bondi
48. vdw_radius_dreiding
49. vdw_radius_mm3
50. vdw_radius_rt
51. vdw_radius_truhlar
52. vdw_radius_uff
Answer:
1. abundance_crust: Abundance in the Earth’s crust (mg/kg)
2. abundance_sea: Abundance in the seas (mg/L)
3. atomic_number: Atomic number
4. atomic_radius: Atomic radius (pm)
5. atomic_radius_rahm: Atomic radius by Rahm et al. (pm)
6. atomic_volume: Atomic volume (cm3/mol)
7. atomic_weight: Atomic weight1
8. atomic_weight_uncertainty: Atomic weight uncertainty1
9. boiling_point: Boiling temperature (K)
10. c6: C_6 dispersion coefficient in a.u. (a.u.)
11. c6_gb: C_6 dispersion coefficient in a.u. (Gould & Bučko) (a.u.)
12. covalent_radius_bragg: Covalent radius by Bragg (pm)
13. covalent_radius_cordero: Covalent radius by Cerdero et al.2 (pm)
14. covalent_radius_pyykko: Single bond covalent radius by Pyykko et al. (pm)
15. covalent_radius_pyykko_double: Double bond covalent radius by Pyykko et al. (pm)
16. covalent_radius_pyykko_triple: Triple bond covalent radius by Pyykko et al. (pm)
17. density: Density at 295K (g/cm3)
18. dipole_polarizability: Dipole polarizability (a.u.)
19. dipole_polarizability_unc: Dipole polarizability uncertainty (a.u.)
20. discovery_year
21. electron_affinity: Electron affinity3 (eV)
22. en_allen: Allen’s scale of electronegativity4 (eV)
23. en_ghosh: Ghosh’s scale of electronegativity
24. en_pauling: Pauling’s scale of electronegativity
25. evaporation_heat: Evaporation heat (kJ/mol)
26. fusion_heat: Fusion heat (kJ/mol)
27. gas_basicity: Gas basicity (kJ/mol)
28. glawe_number: Glawe’s number (scale)
29. group_id
30. heat_of_formation: Heat of formation (kJ/mol)
31. is_radioactive: Is the element radioactive
32. lattice_constant: Lattice constant (Angstrom)
33. melting_point: Melting temperature (K)
34. mendeleev_number: Mendeleev’s number5
35. metallic_radius: Single-bond metallic radius (pm)
36. metallic_radius_c12: Metallic radius with 12 nearest neighbors (pm)
37. molar_heat_capacity
38. period: Period in periodic table
39. pettifor_number: Pettifor scale
40. proton_affinity: Proton affinity (kJ/mol)
41. series_id
42. specific_heat_capacity
43. thermal_conductivity: Thermal conductivity @25 C (W/(m K))
44. vdw_radius: Van der Waals radius (pm)
45. vdw_radius_alvarez: Van der Waals radius according to Alvarez7 (pm)
46. vdw_radius_batsanov: Van der Waals radius according to Batsanov (pm)
47. vdw_radius_bondi: Van der Waals radius according to Bondi (pm)
48. vdw_radius_dreiding: Van der Waals radius from the DREIDING FF (pm)
49. vdw_radius_mm3: Van der Waals radius from the MM3 FF (pm)
50. vdw_radius_rt: Van der Waals radius according to Rowland and Taylor (pm)
51. vdw_radius_truhlar: Van der Waals radius according to Truhlar (pm)
52. vdw_radius_uff: Van der Waals radius from the UFF (pm)
Solution:
1. abundance_crust: Abundance in the Earth’s crust (mg/kg)
2. abundance_sea: Abundance in the seas (mg/L)
3. atomic_number: Atomic number
4. atomic_radius: Atomic radius (pm)
5. atomic_radius_rahm: Atomic radius by Rahm et al. (pm)
6. atomic_volume: Atomic volume (cm3/mol)
7. atomic_weight: Atomic weight1
8. atomic_weight_uncertainty: Atomic weight uncertainty1
9. boiling_point: Boiling temperature (K)
10. c6: C_6 dispersion coefficient in a.u. (a.u.)
11. c6_gb: C_6 dispersion coefficient in a.u. (Gould & Bučko) (a.u.)
12. covalent_radius_bragg: Covalent radius by Bragg (pm)
13. covalent_radius_cordero: Covalent radius by Cerdero et al.2 (pm)
14. covalent_radius_pyykko: Single bond covalent radius by Pyykko et al. (pm)
15. covalent_radius_pyykko_double: Double bond covalent radius by Pyykko et al. (pm)
16. covalent_radius_pyykko_triple: Triple bond covalent radius by Pyykko et al. (pm)
17. density: Density at 295K (g/cm3)
18. dipole_polarizability: Dipole polarizability (a.u.)
19. dipole_polarizability_unc: Dipole polarizability uncertainty (a.u.)
20. discovery_year
21. electron_affinity: Electron affinity3 (eV)
22. en_allen: Allen’s scale of electronegativity4 (eV)
23. en_ghosh: Ghosh’s scale of electronegativity
24. en_pauling: Pauling’s scale of electronegativity
25. evaporation_heat: Evaporation heat (kJ/mol)
26. fusion_heat: Fusion heat (kJ/mol)
27. gas_basicity: Gas basicity (kJ/mol)
28. glawe_number: Glawe’s number (scale)
29. group_id
30. heat_of_formation: Heat of formation (kJ/mol)
31. is_radioactive: Is the element radioactive
32. lattice_constant: Lattice constant (Angstrom)
33. melting_point: Melting temperature (K)
34. mendeleev_number: Mendeleev’s number5
35. metallic_radius: Single-bond metallic radius (pm)
36. metallic_radius_c12: Metallic radius with 12 nearest neighbors (pm)
37. molar_heat_capacity
38. period: Period in periodic table
39. pettifor_number: Pettifor scale
40. proton_affinity: Proton affinity (kJ/mol)
41. series_id
42. specific_heat_capacity
43. thermal_conductivity: Thermal conductivity @25 C (W/(m K))
44. vdw_radius: Van der Waals radius (pm)
45. vdw_radius_alvarez: Van der Waals radius according to Alvarez7 (pm)
46. vdw_radius_batsanov: Van der Waals radius according to Batsanov (pm)
47. vdw_radius_bondi: Van der Waals radius according to Bondi (pm)
48. vdw_radius_dreiding: Van der Waals radius from the DREIDING FF (pm)
49. vdw_radius_mm3: Van der Waals radius from the MM3 FF (pm)
50. vdw_radius_rt: Van der Waals radius according to Rowland and Taylor (pm)
51. vdw_radius_truhlar: Van der Waals radius according to Truhlar (pm)
52. vdw_radius_uff: Van der Waals radius from the UFF (pm)

problem_type: 3/20 (loop 0/0)

Problem Template: _problem_draw_periodic_table_with_property
Draw periodic table of elements with boiling_point.

Note:
1. You can use option column_name = 'column name' to get a getRandomProblem
2. To get columns available, use code:
ke.pth.get_column_names()
Answer:
Click here to see periodic table.
Solution:

#Code



from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os


# output inline
output_notebook()


ptable_elements = fetch_table('elements')

ptable_output = periodic_plot(ptable_elements,
attribute='boiling_point',
colorby='attribute',
title="boiling_point"
)

show(ptable_output)


Bokeh Plot



List of columns


1. abundance_crust: Abundance in the Earth’s crust (mg/kg)
2. abundance_sea: Abundance in the seas (mg/L)
3. atomic_number: Atomic number
4. atomic_radius: Atomic radius (pm)
5. atomic_radius_rahm: Atomic radius by Rahm et al. (pm)
6. atomic_volume: Atomic volume (cm3/mol)
7. atomic_weight: Atomic weight1
8. atomic_weight_uncertainty: Atomic weight uncertainty1
9. boiling_point: Boiling temperature (K)
10. c6: C_6 dispersion coefficient in a.u. (a.u.)
11. c6_gb: C_6 dispersion coefficient in a.u. (Gould & Bučko) (a.u.)
12. covalent_radius_bragg: Covalent radius by Bragg (pm)
13. covalent_radius_cordero: Covalent radius by Cerdero et al.2 (pm)
14. covalent_radius_pyykko: Single bond covalent radius by Pyykko et al. (pm)
15. covalent_radius_pyykko_double: Double bond covalent radius by Pyykko et al. (pm)
16. covalent_radius_pyykko_triple: Triple bond covalent radius by Pyykko et al. (pm)
17. density: Density at 295K (g/cm3)
18. dipole_polarizability: Dipole polarizability (a.u.)
19. dipole_polarizability_unc: Dipole polarizability uncertainty (a.u.)
20. discovery_year
21. electron_affinity: Electron affinity3 (eV)
22. en_allen: Allen’s scale of electronegativity4 (eV)
23. en_ghosh: Ghosh’s scale of electronegativity
24. en_pauling: Pauling’s scale of electronegativity
25. evaporation_heat: Evaporation heat (kJ/mol)
26. fusion_heat: Fusion heat (kJ/mol)
27. gas_basicity: Gas basicity (kJ/mol)
28. glawe_number: Glawe’s number (scale)
29. group_id
30. heat_of_formation: Heat of formation (kJ/mol)
31. is_radioactive: Is the element radioactive
32. lattice_constant: Lattice constant (Angstrom)
33. melting_point: Melting temperature (K)
34. mendeleev_number: Mendeleev’s number5
35. metallic_radius: Single-bond metallic radius (pm)
36. metallic_radius_c12: Metallic radius with 12 nearest neighbors (pm)
37. molar_heat_capacity
38. period: Period in periodic table
39. pettifor_number: Pettifor scale
40. proton_affinity: Proton affinity (kJ/mol)
41. series_id
42. specific_heat_capacity
43. thermal_conductivity: Thermal conductivity @25 C (W/(m K))
44. vdw_radius: Van der Waals radius (pm)
45. vdw_radius_alvarez: Van der Waals radius according to Alvarez7 (pm)
46. vdw_radius_batsanov: Van der Waals radius according to Batsanov (pm)
47. vdw_radius_bondi: Van der Waals radius according to Bondi (pm)
48. vdw_radius_dreiding: Van der Waals radius from the DREIDING FF (pm)
49. vdw_radius_mm3: Van der Waals radius from the MM3 FF (pm)
50. vdw_radius_rt: Van der Waals radius according to Rowland and Taylor (pm)
51. vdw_radius_truhlar: Van der Waals radius according to Truhlar (pm)
52. vdw_radius_uff: Van der Waals radius from the UFF (pm)

problem_type: 4/20 (loop 0/0)

Problem Template: _problem_periodic_table_liquid
Draw periodic table of elements and identify liquids.
Answer:
Click here to see periodic table.


The liquids melt below the normal temperature 300K but do not boil to become gases.
There are two elements whose melting points are below 300K
but boiling point above 300K:
symbol name melting_point boiling_point
atomic_number
35 Br Bromine 265.90 331.90
80 Hg Mercury 234.28 629.73
Solution:
The liquids melt below the normal temperature 300K but do not boil to become gases.
There are two elements whose melting points are below 300K
but boiling point above 300K:
symbol name melting_point boiling_point
atomic_number
35 Br Bromine 265.90 331.90
80 Hg Mercury 234.28 629.73



#Code



from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os


# output inline
output_notebook()


ptable_elements = fetch_table('elements')

ptable_output = periodic_plot(ptable_elements,
attribute='melting_point',
colorby='attribute',
title="melting_point"
)

show(ptable_output)


Bokeh Plot

problem_type: 5/20 (loop 0/0)

Problem Template: _problem_periodic_table_gases
Draw periodic table of elements and identify gases.
Answer:
Click here to see periodic table.


The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
symbol name boiling_point
atomic_number
1 H Hydrogen 20.280
2 He Helium 4.216
7 N Nitrogen 77.400
8 O Oxygen 90.190
9 F Fluorine 85.010
10 Ne Neon 27.100
17 Cl Chlorine 238.600
18 Ar Argon 87.300
36 Kr Krypton 120.850
54 Xe Xenon 166.100
86 Rn Radon 211.400
Solution:
The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
symbol name boiling_point
atomic_number
1 H Hydrogen 20.280
2 He Helium 4.216
7 N Nitrogen 77.400
8 O Oxygen 90.190
9 F Fluorine 85.010
10 Ne Neon 27.100
17 Cl Chlorine 238.600
18 Ar Argon 87.300
36 Kr Krypton 120.850
54 Xe Xenon 166.100
86 Rn Radon 211.400



#Code



from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os


# output inline
output_notebook()


ptable_elements = fetch_table('elements')

ptable_output = periodic_plot(ptable_elements,
attribute='boiling_point',
colorby='attribute',
title="boiling_point"
)

show(ptable_output)


Bokeh Plot

problem_type: 6/20 (loop 0/0)

Problem Template: _problem_periodic_table_is_radioactive
Draw periodic table of elements and radioactive elements.
Answer:
Click here to see periodic table.


The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
symbol name is_radioactive
atomic_number
43 Tc Technetium True
61 Pm Promethium True
84 Po Polonium True
85 At Astatine True
86 Rn Radon True
87 Fr Francium True
88 Ra Radium True
89 Ac Actinium True
90 Th Thorium True
91 Pa Protactinium True
92 U Uranium True
93 Np Neptunium True
94 Pu Plutonium True
95 Am Americium True
96 Cm Curium True
97 Bk Berkelium True
98 Cf Californium True
99 Es Einsteinium True
100 Fm Fermium True
101 Md Mendelevium True
102 No Nobelium True
103 Lr Lawrencium True
104 Rf Rutherfordium True
105 Db Dubnium True
106 Sg Seaborgium True
107 Bh Bohrium True
108 Hs Hassium True
109 Mt Meitnerium True
110 Ds Darmstadtium True
111 Rg Roentgenium True
112 Cn Copernicium True
113 Nh Nihonium True
114 Fl Flerovium True
115 Mc Moscovium True
116 Lv Livermorium True
117 Ts Tennessine True
118 Og Oganesson True
Solution:
The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
symbol name is_radioactive
atomic_number
43 Tc Technetium True
61 Pm Promethium True
84 Po Polonium True
85 At Astatine True
86 Rn Radon True
87 Fr Francium True
88 Ra Radium True
89 Ac Actinium True
90 Th Thorium True
91 Pa Protactinium True
92 U Uranium True
93 Np Neptunium True
94 Pu Plutonium True
95 Am Americium True
96 Cm Curium True
97 Bk Berkelium True
98 Cf Californium True
99 Es Einsteinium True
100 Fm Fermium True
101 Md Mendelevium True
102 No Nobelium True
103 Lr Lawrencium True
104 Rf Rutherfordium True
105 Db Dubnium True
106 Sg Seaborgium True
107 Bh Bohrium True
108 Hs Hassium True
109 Mt Meitnerium True
110 Ds Darmstadtium True
111 Rg Roentgenium True
112 Cn Copernicium True
113 Nh Nihonium True
114 Fl Flerovium True
115 Mc Moscovium True
116 Lv Livermorium True
117 Ts Tennessine True
118 Og Oganesson True



#Code



from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os


# output inline
output_notebook()


ptable_elements = fetch_table('elements')

ptable_output = periodic_plot(ptable_elements,
attribute='is_radioactive',
colorby='attribute',
title="is_radioactive"
)

show(ptable_output)


Bokeh Plot

problem_type: 7/20 (loop 0/0)

Problem Template: _problem_plot_a_property
Plot a graph of atomic_number vs atomic_weight of elements.
Answer:
2022-09-09T15:49:08.413715 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


x_column and y_column
'annotation', 'atomic_number', 'atomic_radius', 'atomic_volume', 'block', 'boiling_point', 'density', 'description', 'dipole_polarizability', 'electron_affinity', 'electronic_configuration', 'evaporation_heat', 'fusion_heat', 'group_id', 'lattice_constant', 'lattice_structure', 'melting_point', 'name', 'period', 'series_id', 'specific_heat_capacity', 'symbol', 'thermal_conductivity', 'vdw_radius', 'covalent_radius_cordero', 'covalent_radius_pyykko', 'en_pauling', 'en_allen', 'jmol_color', 'cpk_color', 'proton_affinity', 'gas_basicity', 'heat_of_formation', 'c6', 'covalent_radius_bragg', 'vdw_radius_bondi', 'vdw_radius_truhlar', 'vdw_radius_rt', 'vdw_radius_batsanov', 'vdw_radius_dreiding', 'vdw_radius_uff', 'vdw_radius_mm3', 'abundance_crust', 'abundance_sea', 'molcas_gv_color', 'en_ghosh', 'vdw_radius_alvarez', 'c6_gb', 'atomic_weight', 'atomic_weight_uncertainty', 'is_monoisotopic', 'is_radioactive', 'cas', 'atomic_radius_rahm', 'geochemical_class', 'goldschmidt_class', 'metallic_radius', 'metallic_radius_c12', 'covalent_radius_pyykko_double', 'covalent_radius_pyykko_triple', 'discoverers', 'discovery_year', 'discovery_location', 'name_origin', 'sources', 'uses', 'mendeleev_number', 'dipole_polarizability_unc', 'pettifor_number', 'glawe_number', 'molar_heat_capacity', 'group_symbol', 'group_name'

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:08.413715 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol atomic_weight atomic_weight_uncertainty electronic_configuration
atomic_number
1 H 1.008000 NaN 1s
2 He 4.002602 2.000000e-06 1s2
3 Li 6.940000 NaN [He] 2s
4 Be 9.012183 5.000000e-07 [He] 2s2
5 B 10.810000 NaN [He] 2s2 2p
6 C 12.011000 NaN [He] 2s2 2p2
7 N 14.007000 NaN [He] 2s2 2p3
8 O 15.999000 NaN [He] 2s2 2p4
9 F 18.998403 6.000000e-09 [He] 2s2 2p5
10 Ne 20.179700 6.000000e-04 [He] 2s2 2p6
11 Na 22.989769 2.000000e-08 [Ne] 3s
12 Mg 24.305000 NaN [Ne] 3s2
13 Al 26.981538 7.000000e-07 [Ne] 3s2 3p
14 Si 28.085000 NaN [Ne] 3s2 3p2
15 P 30.973762 5.000000e-09 [Ne] 3s2 3p3
16 S 32.060000 NaN [Ne] 3s2 3p4
17 Cl 35.450000 NaN [Ne] 3s2 3p5
18 Ar 39.948000 1.000000e-03 [Ne] 3s2 3p6
19 K 39.098300 1.000000e-04 [Ar] 4s
20 Ca 40.078000 4.000000e-03 [Ar] 4s2
21 Sc 44.955908 5.000000e-06 [Ar] 3d 4s2
22 Ti 47.867000 1.000000e-03 [Ar] 3d2 4s2
23 V 50.941500 1.000000e-04 [Ar] 3d3 4s2
24 Cr 51.996100 6.000000e-04 [Ar] 3d5 4s
25 Mn 54.938044 3.000000e-06 [Ar] 3d5 4s2
26 Fe 55.845000 2.000000e-03 [Ar] 3d6 4s2
27 Co 58.933194 4.000000e-06 [Ar] 3d7 4s2
28 Ni 58.693400 4.000000e-04 [Ar] 3d8 4s2
29 Cu 63.546000 3.000000e-03 [Ar] 3d10 4s
30 Zn 65.380000 2.000000e-02 [Ar] 3d10 4s2
31 Ga 69.723000 1.000000e-03 [Ar] 3d10 4s2 4p
32 Ge 72.630000 8.000000e-03 [Ar] 3d10 4s2 4p2
33 As 74.921595 6.000000e-06 [Ar] 3d10 4s2 4p3
34 Se 78.971000 8.000000e-03 [Ar] 3d10 4s2 4p4
35 Br 79.904000 NaN [Ar] 3d10 4s2 4p5
36 Kr 83.798000 2.000000e-03 [Ar] 3d10 4s2 4p6
37 Rb 85.467800 3.000000e-04 [Kr] 5s
38 Sr 87.620000 1.000000e-02 [Kr] 5s2
39 Y 88.905840 2.000000e-05 [Kr] 4d 5s2
40 Zr 91.224000 2.000000e-03 [Kr] 4d2 5s2
41 Nb 92.906370 2.000000e-05 [Kr] 4d4 5s
42 Mo 95.950000 1.000000e-02 [Kr] 4d5 5s
43 Tc 97.907210 3.000000e-05 [Kr] 4d5 5s2
44 Ru 101.070000 2.000000e-02 [Kr] 4d7 5s
45 Rh 102.905500 2.000000e-05 [Kr] 4d8 5s
46 Pd 106.420000 1.000000e-02 [Kr] 4d10
47 Ag 107.868200 2.000000e-04 [Kr] 4d10 5s
48 Cd 112.414000 4.000000e-03 [Kr] 4d10 5s2
49 In 114.818000 1.000000e-03 [Kr] 4d10 5s2 5p
50 Sn 118.710000 7.000000e-03 [Kr] 4d10 5s2 5p2
51 Sb 121.760000 1.000000e-03 [Kr] 4d10 5s2 5p3
52 Te 127.600000 3.000000e-02 [Kr] 4d10 5s2 5p4
53 I 126.904470 3.000000e-05 [Kr] 4d10 5s2 5p5
54 Xe 131.293000 6.000000e-03 [Kr] 4d10 5s2 5p6
55 Cs 132.905452 6.000000e-08 [Xe] 6s
56 Ba 137.327000 7.000000e-03 [Xe] 6s2
57 La 138.905470 7.000000e-05 [Xe] 5d 6s2
58 Ce 140.116000 1.000000e-03 [Xe] 4f 5d 6s2
59 Pr 140.907660 2.000000e-05 [Xe] 4f3 6s2
60 Nd 144.242000 3.000000e-03 [Xe] 4f4 6s2
61 Pm 144.912760 2.000000e-05 [Xe] 4f5 6s2
62 Sm 150.360000 2.000000e-02 [Xe] 4f6 6s2
63 Eu 151.964000 1.000000e-03 [Xe] 4f7 6s2
64 Gd 157.250000 3.000000e-02 [Xe] 4f7 5d 6s2
65 Tb 158.925350 2.000000e-05 [Xe] 4f9 6s2
66 Dy 162.500000 1.000000e-03 [Xe] 4f10 6s2
67 Ho 164.930330 2.000000e-05 [Xe] 4f11 6s2
68 Er 167.259000 3.000000e-03 [Xe] 4f12 6s2
69 Tm 168.934220 2.000000e-05 [Xe] 4f13 6s2
70 Yb 173.045000 1.000000e-02 [Xe] 4f14 6s2
71 Lu 174.966800 1.000000e-04 [Xe] 4f14 5d 6s2
72 Hf 178.490000 2.000000e-02 [Xe] 4f14 5d2 6s2
73 Ta 180.947880 2.000000e-05 [Xe] 4f14 5d3 6s2
74 W 183.840000 1.000000e-02 [Xe] 4f14 5d4 6s2
75 Re 186.207000 1.000000e-03 [Xe] 4f14 5d5 6s2
76 Os 190.230000 3.000000e-02 [Xe] 4f14 5d6 6s2
77 Ir 192.217000 3.000000e-03 [Xe] 4f14 5d7 6s2
78 Pt 195.084000 9.000000e-03 [Xe] 4f14 5d9 6s
79 Au 196.966569 5.000000e-06 [Xe] 4f14 5d10 6s
80 Hg 200.592000 3.000000e-03 [Xe] 4f14 5d10 6s2
81 Tl 204.380000 NaN [Xe] 4f14 5d10 6s2 6p
82 Pb 207.200000 1.000000e-01 [Xe] 4f14 5d10 6s2 6p2
83 Bi 208.980400 1.000000e-05 [Xe] 4f14 5d10 6s2 6p3
84 Po 209.000000 NaN [Xe] 4f14 5d10 6s2 6p4
85 At 210.000000 NaN [Xe] 4f14 5d10 6s2 6p5
86 Rn 222.000000 NaN [Xe] 4f14 5d10 6s2 6p6
87 Fr 223.000000 NaN [Rn] 7s
88 Ra 226.000000 NaN [Rn] 7s2
89 Ac 227.000000 NaN [Rn] 6d 7s2
90 Th 232.037700 4.000000e-04 [Rn] 6d2 7s2
91 Pa 231.035880 2.000000e-05 [Rn] 5f2 6d 7s2
92 U 238.028910 3.000000e-05 [Rn] 5f3 6d 7s2
93 Np 237.000000 NaN [Rn] 5f4 6d 7s2
94 Pu 244.000000 NaN [Rn] 5f6 7s2
95 Am 243.000000 NaN [Rn] 5f7 7s2
96 Cm 247.000000 NaN [Rn] 5f7 6d 7s2
97 Bk 247.000000 NaN [Rn] 5f9 7s2
98 Cf 251.000000 NaN [Rn] 5f10 7s2
99 Es 252.000000 NaN [Rn] 5f11 7s2
100 Fm 257.000000 NaN [Rn] 5f12 7s2
101 Md 258.000000 NaN [Rn] 5f13 7s2
102 No 259.000000 NaN [Rn] 5f14 7s2
103 Lr 262.000000 NaN [Rn] 5f14 6d 7s2
104 Rf 267.000000 NaN [Rn] 5f14 6d2 7s2
105 Db 268.000000 NaN [Rn] 5f14 6d3 7s2
106 Sg 271.000000 NaN [Rn] 5f14 6d4 7s2
107 Bh 274.000000 NaN [Rn] 5f14 6d5 7s2
108 Hs 269.000000 NaN [Rn] 5f14 6d6 7s2
109 Mt 276.000000 NaN [Rn] 5f14 6d7 7s2
110 Ds 281.000000 NaN [Rn] 5f14 6d9 7s1
111 Rg 281.000000 NaN [Rn] 5f14 6d10 7s1
112 Cn 285.000000 NaN [Rn] 5f14 6d10 7s2
113 Nh 286.000000 NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl 289.000000 NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc 288.000000 NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv 293.000000 NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts 294.000000 NaN [Rn] 5f14 6d10 7s2 7p5
118 Og 294.000000 NaN [Rn] 5f14 6d10 7s2 7p6

problem_type: 8/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_atomic_radius
Plot a graph of atomic_number vs ['vdw_radius_bondi'] of elements.
Answer:
2022-09-09T15:49:09.890867 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Trend in atomic radii:

  1. Every time a new orbit is added, the radius increases.
  2. Within an orbit, over all trend of atomic radii can be explained based two factors that are working there, nuclear attractions and inter electronic repulsions, where one supports decrease in atomic radii and the other increase in atomic radii, respectively.
    As a result, the outer electron experiences a pull towards the nucleus as the nuclear charge increases and the size decreases. Order of shielding is as s>p>d>f.
    In d and f orbitals, initially one factor nuclear charge increases as the new electrons coming and entering into same orbital that to inner one, as the number of electrons are low in the inner shell and the shielding power of d orbial is low, inter electronic repulsions will be operating less than nuclear charge, which results in decrease in atomic radii.
    In the middle these two factors mostly operating equal, which results in consistency in size.
    In the end, as the number of electrons in the inner orbital increases the outer electrons feel better repulsions and slightly pushed away. though d orbital has less shielding power, the number of electrons are too high to make the electronic repulsion as more dominant factor at the end, which results in increase in the atomic radii.

Optional Input Parameters


y_column
A list of one or more values from
['atomic_radius', 'vdw_radius', 'covalent_radius_cordero', 'covalent_radius_pyykko', 'covalent_radius_bragg', 'vdw_radius_bondi', 'vdw_radius_truhlar', 'vdw_radius_rt', 'vdw_radius_batsanov', 'vdw_radius_dreiding', 'vdw_radius_uff', 'vdw_radius_mm3', 'vdw_radius_alvarez', 'atomic_radius_rahm', 'metallic_radius', 'metallic_radius_c12', 'covalent_radius_pyykko_double', 'covalent_radius_pyykko_triple']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:09.890867 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol vdw_radius_bondi electronic_configuration
atomic_number
1 H 120.0 1s
2 He 140.0 1s2
3 Li 181.0 [He] 2s
4 Be NaN [He] 2s2
5 B NaN [He] 2s2 2p
6 C 170.0 [He] 2s2 2p2
7 N 155.0 [He] 2s2 2p3
8 O 152.0 [He] 2s2 2p4
9 F 147.0 [He] 2s2 2p5
10 Ne 154.0 [He] 2s2 2p6
11 Na 227.0 [Ne] 3s
12 Mg 173.0 [Ne] 3s2
13 Al NaN [Ne] 3s2 3p
14 Si 210.0 [Ne] 3s2 3p2
15 P 180.0 [Ne] 3s2 3p3
16 S 180.0 [Ne] 3s2 3p4
17 Cl 175.0 [Ne] 3s2 3p5
18 Ar 188.0 [Ne] 3s2 3p6
19 K 275.0 [Ar] 4s
20 Ca NaN [Ar] 4s2
21 Sc NaN [Ar] 3d 4s2
22 Ti NaN [Ar] 3d2 4s2
23 V NaN [Ar] 3d3 4s2
24 Cr NaN [Ar] 3d5 4s
25 Mn NaN [Ar] 3d5 4s2
26 Fe NaN [Ar] 3d6 4s2
27 Co NaN [Ar] 3d7 4s2
28 Ni NaN [Ar] 3d8 4s2
29 Cu NaN [Ar] 3d10 4s
30 Zn NaN [Ar] 3d10 4s2
31 Ga 187.0 [Ar] 3d10 4s2 4p
32 Ge NaN [Ar] 3d10 4s2 4p2
33 As 185.0 [Ar] 3d10 4s2 4p3
34 Se 190.0 [Ar] 3d10 4s2 4p4
35 Br 183.0 [Ar] 3d10 4s2 4p5
36 Kr 202.0 [Ar] 3d10 4s2 4p6
37 Rb NaN [Kr] 5s
38 Sr NaN [Kr] 5s2
39 Y NaN [Kr] 4d 5s2
40 Zr NaN [Kr] 4d2 5s2
41 Nb NaN [Kr] 4d4 5s
42 Mo NaN [Kr] 4d5 5s
43 Tc NaN [Kr] 4d5 5s2
44 Ru NaN [Kr] 4d7 5s
45 Rh NaN [Kr] 4d8 5s
46 Pd NaN [Kr] 4d10
47 Ag NaN [Kr] 4d10 5s
48 Cd NaN [Kr] 4d10 5s2
49 In 193.0 [Kr] 4d10 5s2 5p
50 Sn 217.0 [Kr] 4d10 5s2 5p2
51 Sb NaN [Kr] 4d10 5s2 5p3
52 Te 206.0 [Kr] 4d10 5s2 5p4
53 I 198.0 [Kr] 4d10 5s2 5p5
54 Xe 216.0 [Kr] 4d10 5s2 5p6
55 Cs NaN [Xe] 6s
56 Ba NaN [Xe] 6s2
57 La NaN [Xe] 5d 6s2
58 Ce NaN [Xe] 4f 5d 6s2
59 Pr NaN [Xe] 4f3 6s2
60 Nd NaN [Xe] 4f4 6s2
61 Pm NaN [Xe] 4f5 6s2
62 Sm NaN [Xe] 4f6 6s2
63 Eu NaN [Xe] 4f7 6s2
64 Gd NaN [Xe] 4f7 5d 6s2
65 Tb NaN [Xe] 4f9 6s2
66 Dy NaN [Xe] 4f10 6s2
67 Ho NaN [Xe] 4f11 6s2
68 Er NaN [Xe] 4f12 6s2
69 Tm NaN [Xe] 4f13 6s2
70 Yb NaN [Xe] 4f14 6s2
71 Lu NaN [Xe] 4f14 5d 6s2
72 Hf NaN [Xe] 4f14 5d2 6s2
73 Ta NaN [Xe] 4f14 5d3 6s2
74 W NaN [Xe] 4f14 5d4 6s2
75 Re NaN [Xe] 4f14 5d5 6s2
76 Os NaN [Xe] 4f14 5d6 6s2
77 Ir NaN [Xe] 4f14 5d7 6s2
78 Pt NaN [Xe] 4f14 5d9 6s
79 Au NaN [Xe] 4f14 5d10 6s
80 Hg NaN [Xe] 4f14 5d10 6s2
81 Tl 196.0 [Xe] 4f14 5d10 6s2 6p
82 Pb 202.0 [Xe] 4f14 5d10 6s2 6p2
83 Bi NaN [Xe] 4f14 5d10 6s2 6p3
84 Po NaN [Xe] 4f14 5d10 6s2 6p4
85 At NaN [Xe] 4f14 5d10 6s2 6p5
86 Rn NaN [Xe] 4f14 5d10 6s2 6p6
87 Fr NaN [Rn] 7s
88 Ra NaN [Rn] 7s2
89 Ac NaN [Rn] 6d 7s2
90 Th NaN [Rn] 6d2 7s2
91 Pa NaN [Rn] 5f2 6d 7s2
92 U NaN [Rn] 5f3 6d 7s2
93 Np NaN [Rn] 5f4 6d 7s2
94 Pu NaN [Rn] 5f6 7s2
95 Am NaN [Rn] 5f7 7s2
96 Cm NaN [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf NaN [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm NaN [Rn] 5f12 7s2
101 Md NaN [Rn] 5f13 7s2
102 No NaN [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og NaN [Rn] 5f14 6d10 7s2 7p6

problem_type: 9/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_covalent_radius
Plot a graph of atomic_number vs ['covalent_radius_bragg'] of elements.
Answer:
2022-09-09T15:49:11.655277 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['covalent_radius_cordero', 'covalent_radius_pyykko', 'covalent_radius_bragg', 'covalent_radius_pyykko_double', 'covalent_radius_pyykko_triple', 'atomic_radius', 'metallic_radius']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:11.655277 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol covalent_radius_bragg electronic_configuration
atomic_number
1 H NaN 1s
2 He NaN 1s2
3 Li 150.0 [He] 2s
4 Be 115.0 [He] 2s2
5 B NaN [He] 2s2 2p
6 C 77.0 [He] 2s2 2p2
7 N 65.0 [He] 2s2 2p3
8 O 65.0 [He] 2s2 2p4
9 F 67.0 [He] 2s2 2p5
10 Ne NaN [He] 2s2 2p6
11 Na 177.0 [Ne] 3s
12 Mg 142.0 [Ne] 3s2
13 Al 135.0 [Ne] 3s2 3p
14 Si 117.0 [Ne] 3s2 3p2
15 P NaN [Ne] 3s2 3p3
16 S 102.0 [Ne] 3s2 3p4
17 Cl 105.0 [Ne] 3s2 3p5
18 Ar NaN [Ne] 3s2 3p6
19 K 207.0 [Ar] 4s
20 Ca 170.0 [Ar] 4s2
21 Sc NaN [Ar] 3d 4s2
22 Ti 140.0 [Ar] 3d2 4s2
23 V NaN [Ar] 3d3 4s2
24 Cr 140.0 [Ar] 3d5 4s
25 Mn 147.0 [Ar] 3d5 4s2
26 Fe 140.0 [Ar] 3d6 4s2
27 Co 137.0 [Ar] 3d7 4s2
28 Ni 135.0 [Ar] 3d8 4s2
29 Cu 137.0 [Ar] 3d10 4s
30 Zn 132.0 [Ar] 3d10 4s2
31 Ga NaN [Ar] 3d10 4s2 4p
32 Ge NaN [Ar] 3d10 4s2 4p2
33 As 126.0 [Ar] 3d10 4s2 4p3
34 Se 117.0 [Ar] 3d10 4s2 4p4
35 Br 119.0 [Ar] 3d10 4s2 4p5
36 Kr NaN [Ar] 3d10 4s2 4p6
37 Rb 225.0 [Kr] 5s
38 Sr 195.0 [Kr] 5s2
39 Y NaN [Kr] 4d 5s2
40 Zr NaN [Kr] 4d2 5s2
41 Nb NaN [Kr] 4d4 5s
42 Mo NaN [Kr] 4d5 5s
43 Tc NaN [Kr] 4d5 5s2
44 Ru NaN [Kr] 4d7 5s
45 Rh NaN [Kr] 4d8 5s
46 Pd NaN [Kr] 4d10
47 Ag 177.0 [Kr] 4d10 5s
48 Cd 160.0 [Kr] 4d10 5s2
49 In NaN [Kr] 4d10 5s2 5p
50 Sn 140.0 [Kr] 4d10 5s2 5p2
51 Sb 140.0 [Kr] 4d10 5s2 5p3
52 Te 133.0 [Kr] 4d10 5s2 5p4
53 I 140.0 [Kr] 4d10 5s2 5p5
54 Xe NaN [Kr] 4d10 5s2 5p6
55 Cs 237.0 [Xe] 6s
56 Ba 210.0 [Xe] 6s2
57 La NaN [Xe] 5d 6s2
58 Ce NaN [Xe] 4f 5d 6s2
59 Pr NaN [Xe] 4f3 6s2
60 Nd NaN [Xe] 4f4 6s2
61 Pm NaN [Xe] 4f5 6s2
62 Sm NaN [Xe] 4f6 6s2
63 Eu NaN [Xe] 4f7 6s2
64 Gd NaN [Xe] 4f7 5d 6s2
65 Tb NaN [Xe] 4f9 6s2
66 Dy NaN [Xe] 4f10 6s2
67 Ho NaN [Xe] 4f11 6s2
68 Er NaN [Xe] 4f12 6s2
69 Tm NaN [Xe] 4f13 6s2
70 Yb NaN [Xe] 4f14 6s2
71 Lu NaN [Xe] 4f14 5d 6s2
72 Hf NaN [Xe] 4f14 5d2 6s2
73 Ta NaN [Xe] 4f14 5d3 6s2
74 W NaN [Xe] 4f14 5d4 6s2
75 Re NaN [Xe] 4f14 5d5 6s2
76 Os NaN [Xe] 4f14 5d6 6s2
77 Ir NaN [Xe] 4f14 5d7 6s2
78 Pt NaN [Xe] 4f14 5d9 6s
79 Au NaN [Xe] 4f14 5d10 6s
80 Hg NaN [Xe] 4f14 5d10 6s2
81 Tl 190.0 [Xe] 4f14 5d10 6s2 6p
82 Pb NaN [Xe] 4f14 5d10 6s2 6p2
83 Bi 148.0 [Xe] 4f14 5d10 6s2 6p3
84 Po NaN [Xe] 4f14 5d10 6s2 6p4
85 At NaN [Xe] 4f14 5d10 6s2 6p5
86 Rn NaN [Xe] 4f14 5d10 6s2 6p6
87 Fr NaN [Rn] 7s
88 Ra NaN [Rn] 7s2
89 Ac NaN [Rn] 6d 7s2
90 Th NaN [Rn] 6d2 7s2
91 Pa NaN [Rn] 5f2 6d 7s2
92 U NaN [Rn] 5f3 6d 7s2
93 Np NaN [Rn] 5f4 6d 7s2
94 Pu NaN [Rn] 5f6 7s2
95 Am NaN [Rn] 5f7 7s2
96 Cm NaN [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf NaN [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm NaN [Rn] 5f12 7s2
101 Md NaN [Rn] 5f13 7s2
102 No NaN [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og NaN [Rn] 5f14 6d10 7s2 7p6

problem_type: 10/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_metallic_radius
Plot a graph of atomic_number vs ['metallic_radius'] of elements.
Answer:
2022-09-09T15:49:12.844255 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['metallic_radius', 'atomic_radius']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:12.844255 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol metallic_radius electronic_configuration
atomic_number
1 H NaN 1s
2 He NaN 1s2
3 Li 123.0 [He] 2s
4 Be 89.0 [He] 2s2
5 B 80.0 [He] 2s2 2p
6 C NaN [He] 2s2 2p2
7 N NaN [He] 2s2 2p3
8 O NaN [He] 2s2 2p4
9 F NaN [He] 2s2 2p5
10 Ne NaN [He] 2s2 2p6
11 Na 157.0 [Ne] 3s
12 Mg 136.0 [Ne] 3s2
13 Al 125.0 [Ne] 3s2 3p
14 Si 117.0 [Ne] 3s2 3p2
15 P 110.0 [Ne] 3s2 3p3
16 S 104.0 [Ne] 3s2 3p4
17 Cl NaN [Ne] 3s2 3p5
18 Ar NaN [Ne] 3s2 3p6
19 K 203.0 [Ar] 4s
20 Ca 174.0 [Ar] 4s2
21 Sc 144.0 [Ar] 3d 4s2
22 Ti 132.0 [Ar] 3d2 4s2
23 V 122.0 [Ar] 3d3 4s2
24 Cr 119.0 [Ar] 3d5 4s
25 Mn 118.0 [Ar] 3d5 4s2
26 Fe 117.0 [Ar] 3d6 4s2
27 Co 116.0 [Ar] 3d7 4s2
28 Ni 115.0 [Ar] 3d8 4s2
29 Cu 118.0 [Ar] 3d10 4s
30 Zn 121.0 [Ar] 3d10 4s2
31 Ga 125.0 [Ar] 3d10 4s2 4p
32 Ge 124.0 [Ar] 3d10 4s2 4p2
33 As 121.0 [Ar] 3d10 4s2 4p3
34 Se 117.0 [Ar] 3d10 4s2 4p4
35 Br NaN [Ar] 3d10 4s2 4p5
36 Kr NaN [Ar] 3d10 4s2 4p6
37 Rb 216.0 [Kr] 5s
38 Sr 191.0 [Kr] 5s2
39 Y 162.0 [Kr] 4d 5s2
40 Zr 145.0 [Kr] 4d2 5s2
41 Nb 134.0 [Kr] 4d4 5s
42 Mo 130.0 [Kr] 4d5 5s
43 Tc 127.0 [Kr] 4d5 5s2
44 Ru 125.0 [Kr] 4d7 5s
45 Rh 125.0 [Kr] 4d8 5s
46 Pd 128.0 [Kr] 4d10
47 Ag 134.0 [Kr] 4d10 5s
48 Cd 138.0 [Kr] 4d10 5s2
49 In 142.0 [Kr] 4d10 5s2 5p
50 Sn 142.0 [Kr] 4d10 5s2 5p2
51 Sb 139.0 [Kr] 4d10 5s2 5p3
52 Te 137.0 [Kr] 4d10 5s2 5p4
53 I NaN [Kr] 4d10 5s2 5p5
54 Xe NaN [Kr] 4d10 5s2 5p6
55 Cs 235.0 [Xe] 6s
56 Ba 198.0 [Xe] 6s2
57 La 169.0 [Xe] 5d 6s2
58 Ce NaN [Xe] 4f 5d 6s2
59 Pr NaN [Xe] 4f3 6s2
60 Nd NaN [Xe] 4f4 6s2
61 Pm NaN [Xe] 4f5 6s2
62 Sm NaN [Xe] 4f6 6s2
63 Eu NaN [Xe] 4f7 6s2
64 Gd NaN [Xe] 4f7 5d 6s2
65 Tb NaN [Xe] 4f9 6s2
66 Dy NaN [Xe] 4f10 6s2
67 Ho NaN [Xe] 4f11 6s2
68 Er NaN [Xe] 4f12 6s2
69 Tm NaN [Xe] 4f13 6s2
70 Yb NaN [Xe] 4f14 6s2
71 Lu NaN [Xe] 4f14 5d 6s2
72 Hf 144.0 [Xe] 4f14 5d2 6s2
73 Ta 134.0 [Xe] 4f14 5d3 6s2
74 W 130.0 [Xe] 4f14 5d4 6s2
75 Re 128.0 [Xe] 4f14 5d5 6s2
76 Os 126.0 [Xe] 4f14 5d6 6s2
77 Ir 127.0 [Xe] 4f14 5d7 6s2
78 Pt 130.0 [Xe] 4f14 5d9 6s
79 Au 134.0 [Xe] 4f14 5d10 6s
80 Hg 139.0 [Xe] 4f14 5d10 6s2
81 Tl 144.0 [Xe] 4f14 5d10 6s2 6p
82 Pb 150.0 [Xe] 4f14 5d10 6s2 6p2
83 Bi 151.0 [Xe] 4f14 5d10 6s2 6p3
84 Po NaN [Xe] 4f14 5d10 6s2 6p4
85 At NaN [Xe] 4f14 5d10 6s2 6p5
86 Rn NaN [Xe] 4f14 5d10 6s2 6p6
87 Fr NaN [Rn] 7s
88 Ra NaN [Rn] 7s2
89 Ac NaN [Rn] 6d 7s2
90 Th NaN [Rn] 6d2 7s2
91 Pa NaN [Rn] 5f2 6d 7s2
92 U NaN [Rn] 5f3 6d 7s2
93 Np NaN [Rn] 5f4 6d 7s2
94 Pu NaN [Rn] 5f6 7s2
95 Am NaN [Rn] 5f7 7s2
96 Cm NaN [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf NaN [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm NaN [Rn] 5f12 7s2
101 Md NaN [Rn] 5f13 7s2
102 No NaN [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og NaN [Rn] 5f14 6d10 7s2 7p6

problem_type: 11/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_atomic_volume
Plot a graph of atomic_number vs ['atomic_volume'] of elements.
Answer:
2022-09-09T15:49:14.143368 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['atomic_volume']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:14.143368 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol atomic_volume electronic_configuration
atomic_number
1 H 14.10 1s
2 He 31.80 1s2
3 Li 13.10 [He] 2s
4 Be 5.00 [He] 2s2
5 B 4.60 [He] 2s2 2p
6 C 5.30 [He] 2s2 2p2
7 N 17.30 [He] 2s2 2p3
8 O 14.00 [He] 2s2 2p4
9 F 17.10 [He] 2s2 2p5
10 Ne 16.80 [He] 2s2 2p6
11 Na 23.70 [Ne] 3s
12 Mg 14.00 [Ne] 3s2
13 Al 10.00 [Ne] 3s2 3p
14 Si 12.10 [Ne] 3s2 3p2
15 P 17.00 [Ne] 3s2 3p3
16 S 15.50 [Ne] 3s2 3p4
17 Cl 18.70 [Ne] 3s2 3p5
18 Ar 24.20 [Ne] 3s2 3p6
19 K 45.30 [Ar] 4s
20 Ca 29.90 [Ar] 4s2
21 Sc 15.00 [Ar] 3d 4s2
22 Ti 10.60 [Ar] 3d2 4s2
23 V 8.35 [Ar] 3d3 4s2
24 Cr 7.23 [Ar] 3d5 4s
25 Mn 7.39 [Ar] 3d5 4s2
26 Fe 7.10 [Ar] 3d6 4s2
27 Co 6.70 [Ar] 3d7 4s2
28 Ni 6.60 [Ar] 3d8 4s2
29 Cu 7.10 [Ar] 3d10 4s
30 Zn 9.20 [Ar] 3d10 4s2
31 Ga 11.80 [Ar] 3d10 4s2 4p
32 Ge 13.60 [Ar] 3d10 4s2 4p2
33 As 13.10 [Ar] 3d10 4s2 4p3
34 Se 16.50 [Ar] 3d10 4s2 4p4
35 Br 23.50 [Ar] 3d10 4s2 4p5
36 Kr 32.20 [Ar] 3d10 4s2 4p6
37 Rb 55.90 [Kr] 5s
38 Sr 33.70 [Kr] 5s2
39 Y 19.80 [Kr] 4d 5s2
40 Zr 14.10 [Kr] 4d2 5s2
41 Nb 10.80 [Kr] 4d4 5s
42 Mo 9.40 [Kr] 4d5 5s
43 Tc 8.50 [Kr] 4d5 5s2
44 Ru 8.30 [Kr] 4d7 5s
45 Rh 8.30 [Kr] 4d8 5s
46 Pd 8.90 [Kr] 4d10
47 Ag 10.30 [Kr] 4d10 5s
48 Cd 13.10 [Kr] 4d10 5s2
49 In 15.70 [Kr] 4d10 5s2 5p
50 Sn 16.30 [Kr] 4d10 5s2 5p2
51 Sb 18.40 [Kr] 4d10 5s2 5p3
52 Te 20.50 [Kr] 4d10 5s2 5p4
53 I 25.70 [Kr] 4d10 5s2 5p5
54 Xe 42.90 [Kr] 4d10 5s2 5p6
55 Cs 70.00 [Xe] 6s
56 Ba 39.00 [Xe] 6s2
57 La 22.50 [Xe] 5d 6s2
58 Ce 21.00 [Xe] 4f 5d 6s2
59 Pr 20.80 [Xe] 4f3 6s2
60 Nd 20.60 [Xe] 4f4 6s2
61 Pm NaN [Xe] 4f5 6s2
62 Sm 19.90 [Xe] 4f6 6s2
63 Eu 28.90 [Xe] 4f7 6s2
64 Gd 19.90 [Xe] 4f7 5d 6s2
65 Tb 19.20 [Xe] 4f9 6s2
66 Dy 19.00 [Xe] 4f10 6s2
67 Ho 18.70 [Xe] 4f11 6s2
68 Er 18.40 [Xe] 4f12 6s2
69 Tm 18.10 [Xe] 4f13 6s2
70 Yb 24.80 [Xe] 4f14 6s2
71 Lu 17.80 [Xe] 4f14 5d 6s2
72 Hf 13.60 [Xe] 4f14 5d2 6s2
73 Ta 10.90 [Xe] 4f14 5d3 6s2
74 W 9.53 [Xe] 4f14 5d4 6s2
75 Re 8.85 [Xe] 4f14 5d5 6s2
76 Os 8.43 [Xe] 4f14 5d6 6s2
77 Ir 8.54 [Xe] 4f14 5d7 6s2
78 Pt 9.10 [Xe] 4f14 5d9 6s
79 Au 10.20 [Xe] 4f14 5d10 6s
80 Hg 14.80 [Xe] 4f14 5d10 6s2
81 Tl 17.20 [Xe] 4f14 5d10 6s2 6p
82 Pb 18.30 [Xe] 4f14 5d10 6s2 6p2
83 Bi 21.30 [Xe] 4f14 5d10 6s2 6p3
84 Po 22.70 [Xe] 4f14 5d10 6s2 6p4
85 At NaN [Xe] 4f14 5d10 6s2 6p5
86 Rn NaN [Xe] 4f14 5d10 6s2 6p6
87 Fr NaN [Rn] 7s
88 Ra 45.00 [Rn] 7s2
89 Ac 22.54 [Rn] 6d 7s2
90 Th 19.80 [Rn] 6d2 7s2
91 Pa 15.00 [Rn] 5f2 6d 7s2
92 U 12.50 [Rn] 5f3 6d 7s2
93 Np 21.10 [Rn] 5f4 6d 7s2
94 Pu NaN [Rn] 5f6 7s2
95 Am 20.80 [Rn] 5f7 7s2
96 Cm 18.28 [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf NaN [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm NaN [Rn] 5f12 7s2
101 Md NaN [Rn] 5f13 7s2
102 No NaN [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og NaN [Rn] 5f14 6d10 7s2 7p6

problem_type: 12/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_volume_and_density
Plot a graph of atomic_number vs ['density'] of elements.
Answer:
2022-09-09T15:49:15.442234 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['atomic_volume', 'density']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:15.442234 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol density electronic_configuration
atomic_number
1 H 0.000082 1s
2 He 0.000164 1s2
3 Li 0.534000 [He] 2s
4 Be 1.850000 [He] 2s2
5 B 2.340000 [He] 2s2 2p
6 C 2.200000 [He] 2s2 2p2
7 N 0.001145 [He] 2s2 2p3
8 O 0.001308 [He] 2s2 2p4
9 F 0.001553 [He] 2s2 2p5
10 Ne 0.000825 [He] 2s2 2p6
11 Na 0.970000 [Ne] 3s
12 Mg 1.740000 [Ne] 3s2
13 Al 2.700000 [Ne] 3s2 3p
14 Si 2.329600 [Ne] 3s2 3p2
15 P 1.823000 [Ne] 3s2 3p3
16 S 2.070000 [Ne] 3s2 3p4
17 Cl 0.002898 [Ne] 3s2 3p5
18 Ar 0.001633 [Ne] 3s2 3p6
19 K 0.890000 [Ar] 4s
20 Ca 1.540000 [Ar] 4s2
21 Sc 2.990000 [Ar] 3d 4s2
22 Ti 4.506000 [Ar] 3d2 4s2
23 V 6.000000 [Ar] 3d3 4s2
24 Cr 7.150000 [Ar] 3d5 4s
25 Mn 7.300000 [Ar] 3d5 4s2
26 Fe 7.870000 [Ar] 3d6 4s2
27 Co 8.860000 [Ar] 3d7 4s2
28 Ni 8.900000 [Ar] 3d8 4s2
29 Cu 8.960000 [Ar] 3d10 4s
30 Zn 7.134000 [Ar] 3d10 4s2
31 Ga 5.910000 [Ar] 3d10 4s2 4p
32 Ge 5.323400 [Ar] 3d10 4s2 4p2
33 As 5.750000 [Ar] 3d10 4s2 4p3
34 Se 4.809000 [Ar] 3d10 4s2 4p4
35 Br 3.102800 [Ar] 3d10 4s2 4p5
36 Kr 0.003425 [Ar] 3d10 4s2 4p6
37 Rb 1.530000 [Kr] 5s
38 Sr 2.640000 [Kr] 5s2
39 Y 4.470000 [Kr] 4d 5s2
40 Zr 6.520000 [Kr] 4d2 5s2
41 Nb 8.570000 [Kr] 4d4 5s
42 Mo 10.200000 [Kr] 4d5 5s
43 Tc 11.000000 [Kr] 4d5 5s2
44 Ru 12.100000 [Kr] 4d7 5s
45 Rh 12.400000 [Kr] 4d8 5s
46 Pd 12.000000 [Kr] 4d10
47 Ag 10.500000 [Kr] 4d10 5s
48 Cd 8.690000 [Kr] 4d10 5s2
49 In 7.310000 [Kr] 4d10 5s2 5p
50 Sn 7.287000 [Kr] 4d10 5s2 5p2
51 Sb 6.680000 [Kr] 4d10 5s2 5p3
52 Te 6.232000 [Kr] 4d10 5s2 5p4
53 I 4.933000 [Kr] 4d10 5s2 5p5
54 Xe 0.005366 [Kr] 4d10 5s2 5p6
55 Cs 1.873000 [Xe] 6s
56 Ba 3.620000 [Xe] 6s2
57 La 6.150000 [Xe] 5d 6s2
58 Ce 6.770000 [Xe] 4f 5d 6s2
59 Pr 6.773000 [Xe] 4f3 6s2
60 Nd 7.010000 [Xe] 4f4 6s2
61 Pm 7.260000 [Xe] 4f5 6s2
62 Sm 7.520000 [Xe] 4f6 6s2
63 Eu 5.240000 [Xe] 4f7 6s2
64 Gd 7.900000 [Xe] 4f7 5d 6s2
65 Tb 8.230000 [Xe] 4f9 6s2
66 Dy 8.550000 [Xe] 4f10 6s2
67 Ho 8.800000 [Xe] 4f11 6s2
68 Er 9.070000 [Xe] 4f12 6s2
69 Tm 9.321000 [Xe] 4f13 6s2
70 Yb 6.900000 [Xe] 4f14 6s2
71 Lu 9.840000 [Xe] 4f14 5d 6s2
72 Hf 13.300000 [Xe] 4f14 5d2 6s2
73 Ta 16.400000 [Xe] 4f14 5d3 6s2
74 W 19.300000 [Xe] 4f14 5d4 6s2
75 Re 20.800000 [Xe] 4f14 5d5 6s2
76 Os 22.587200 [Xe] 4f14 5d6 6s2
77 Ir 22.562200 [Xe] 4f14 5d7 6s2
78 Pt 21.500000 [Xe] 4f14 5d9 6s
79 Au 19.300000 [Xe] 4f14 5d10 6s
80 Hg 13.533600 [Xe] 4f14 5d10 6s2
81 Tl 11.800000 [Xe] 4f14 5d10 6s2 6p
82 Pb 11.300000 [Xe] 4f14 5d10 6s2 6p2
83 Bi 9.790000 [Xe] 4f14 5d10 6s2 6p3
84 Po 9.200000 [Xe] 4f14 5d10 6s2 6p4
85 At 7.000000 [Xe] 4f14 5d10 6s2 6p5
86 Rn 0.009074 [Xe] 4f14 5d10 6s2 6p6
87 Fr 1.870000 [Rn] 7s
88 Ra 5.000000 [Rn] 7s2
89 Ac 10.000000 [Rn] 6d 7s2
90 Th 11.700000 [Rn] 6d2 7s2
91 Pa 15.400000 [Rn] 5f2 6d 7s2
92 U 19.100000 [Rn] 5f3 6d 7s2
93 Np 20.200000 [Rn] 5f4 6d 7s2
94 Pu 19.700000 [Rn] 5f6 7s2
95 Am 12.000000 [Rn] 5f7 7s2
96 Cm 13.510000 [Rn] 5f7 6d 7s2
97 Bk 14.780000 [Rn] 5f9 7s2
98 Cf 15.100000 [Rn] 5f10 7s2
99 Es 8.840000 [Rn] 5f11 7s2
100 Fm 9.700000 [Rn] 5f12 7s2
101 Md 10.300000 [Rn] 5f13 7s2
102 No 9.900000 [Rn] 5f14 7s2
103 Lr 15.600000 [Rn] 5f14 6d 7s2
104 Rf 23.300000 [Rn] 5f14 6d2 7s2
105 Db 29.300000 [Rn] 5f14 6d3 7s2
106 Sg 35.000000 [Rn] 5f14 6d4 7s2
107 Bh 37.100000 [Rn] 5f14 6d5 7s2
108 Hs 40.700000 [Rn] 5f14 6d6 7s2
109 Mt 37.400000 [Rn] 5f14 6d7 7s2
110 Ds 34.800000 [Rn] 5f14 6d9 7s1
111 Rg 28.700000 [Rn] 5f14 6d10 7s1
112 Cn 14.000000 [Rn] 5f14 6d10 7s2
113 Nh 16.000000 [Rn] 5f14 6d10 7s2 7p1
114 Fl 9.928000 [Rn] 5f14 6d10 7s2 7p2
115 Mc 13.500000 [Rn] 5f14 6d10 7s2 7p3
116 Lv 12.900000 [Rn] 5f14 6d10 7s2 7p4
117 Ts 7.200000 [Rn] 5f14 6d10 7s2 7p5
118 Og 7.000000 [Rn] 5f14 6d10 7s2 7p6

problem_type: 13/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_affinity
Plot a graph of atomic_number vs ['electron_affinity'] of elements.
Answer:
2022-09-09T15:49:17.084685 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['electron_affinity', 'proton_affinity']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:17.084685 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol electron_affinity electronic_configuration
atomic_number
1 H 0.754195 1s
2 He -19.700000 1s2
3 Li 0.618049 [He] 2s
4 Be -2.400000 [He] 2s2
5 B 0.279723 [He] 2s2 2p
6 C 1.262119 [He] 2s2 2p2
7 N -1.400000 [He] 2s2 2p3
8 O 1.461113 [He] 2s2 2p4
9 F 3.401190 [He] 2s2 2p5
10 Ne NaN [He] 2s2 2p6
11 Na 0.547926 [Ne] 3s
12 Mg NaN [Ne] 3s2
13 Al 0.432830 [Ne] 3s2 3p
14 Si 1.389521 [Ne] 3s2 3p2
15 P 0.746607 [Ne] 3s2 3p3
16 S 2.077104 [Ne] 3s2 3p4
17 Cl 3.612725 [Ne] 3s2 3p5
18 Ar -11.500000 [Ne] 3s2 3p6
19 K 0.501470 [Ar] 4s
20 Ca 0.024550 [Ar] 4s2
21 Sc 0.188000 [Ar] 3d 4s2
22 Ti 0.079000 [Ar] 3d2 4s2
23 V 0.525000 [Ar] 3d3 4s2
24 Cr 0.666000 [Ar] 3d5 4s
25 Mn NaN [Ar] 3d5 4s2
26 Fe 0.151000 [Ar] 3d6 4s2
27 Co 0.662256 [Ar] 3d7 4s2
28 Ni 1.156000 [Ar] 3d8 4s2
29 Cu 1.235000 [Ar] 3d10 4s
30 Zn NaN [Ar] 3d10 4s2
31 Ga 0.430000 [Ar] 3d10 4s2 4p
32 Ge 1.232712 [Ar] 3d10 4s2 4p2
33 As 0.804000 [Ar] 3d10 4s2 4p3
34 Se 2.020670 [Ar] 3d10 4s2 4p4
35 Br 3.363588 [Ar] 3d10 4s2 4p5
36 Kr NaN [Ar] 3d10 4s2 4p6
37 Rb 0.485920 [Kr] 5s
38 Sr 0.048000 [Kr] 5s2
39 Y 0.307000 [Kr] 4d 5s2
40 Zr 0.426000 [Kr] 4d2 5s2
41 Nb 0.917406 [Kr] 4d4 5s
42 Mo 0.748000 [Kr] 4d5 5s
43 Tc 0.550000 [Kr] 4d5 5s2
44 Ru 1.050000 [Kr] 4d7 5s
45 Rh 1.137000 [Kr] 4d8 5s
46 Pd 0.562000 [Kr] 4d10
47 Ag 1.302000 [Kr] 4d10 5s
48 Cd NaN [Kr] 4d10 5s2
49 In 0.300000 [Kr] 4d10 5s2 5p
50 Sn 1.112067 [Kr] 4d10 5s2 5p2
51 Sb 1.046000 [Kr] 4d10 5s2 5p3
52 Te 1.970876 [Kr] 4d10 5s2 5p4
53 I 3.059037 [Kr] 4d10 5s2 5p5
54 Xe -0.056000 [Kr] 4d10 5s2 5p6
55 Cs 0.471626 [Xe] 6s
56 Ba 0.144620 [Xe] 6s2
57 La 0.470000 [Xe] 5d 6s2
58 Ce 0.650000 [Xe] 4f 5d 6s2
59 Pr 0.962000 [Xe] 4f3 6s2
60 Nd 1.916000 [Xe] 4f4 6s2
61 Pm NaN [Xe] 4f5 6s2
62 Sm NaN [Xe] 4f6 6s2
63 Eu 0.864000 [Xe] 4f7 6s2
64 Gd NaN [Xe] 4f7 5d 6s2
65 Tb 1.165000 [Xe] 4f9 6s2
66 Dy 0.352000 [Xe] 4f10 6s2
67 Ho NaN [Xe] 4f11 6s2
68 Er NaN [Xe] 4f12 6s2
69 Tm 1.029000 [Xe] 4f13 6s2
70 Yb -0.020000 [Xe] 4f14 6s2
71 Lu 0.340000 [Xe] 4f14 5d 6s2
72 Hf 0.014000 [Xe] 4f14 5d2 6s2
73 Ta 0.322000 [Xe] 4f14 5d3 6s2
74 W 0.816260 [Xe] 4f14 5d4 6s2
75 Re 0.150000 [Xe] 4f14 5d5 6s2
76 Os 1.100000 [Xe] 4f14 5d6 6s2
77 Ir 1.563800 [Xe] 4f14 5d7 6s2
78 Pt 2.128000 [Xe] 4f14 5d9 6s
79 Au 2.308630 [Xe] 4f14 5d10 6s
80 Hg NaN [Xe] 4f14 5d10 6s2
81 Tl 0.377000 [Xe] 4f14 5d10 6s2 6p
82 Pb 0.356743 [Xe] 4f14 5d10 6s2 6p2
83 Bi 0.942362 [Xe] 4f14 5d10 6s2 6p3
84 Po 1.900000 [Xe] 4f14 5d10 6s2 6p4
85 At 2.800000 [Xe] 4f14 5d10 6s2 6p5
86 Rn NaN [Xe] 4f14 5d10 6s2 6p6
87 Fr 0.486000 [Rn] 7s
88 Ra 0.100000 [Rn] 7s2
89 Ac 0.350000 [Rn] 6d 7s2
90 Th NaN [Rn] 6d2 7s2
91 Pa NaN [Rn] 5f2 6d 7s2
92 U NaN [Rn] 5f3 6d 7s2
93 Np NaN [Rn] 5f4 6d 7s2
94 Pu NaN [Rn] 5f6 7s2
95 Am NaN [Rn] 5f7 7s2
96 Cm NaN [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf NaN [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm NaN [Rn] 5f12 7s2
101 Md NaN [Rn] 5f13 7s2
102 No NaN [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og 0.056000 [Rn] 5f14 6d10 7s2 7p6

problem_type: 14/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_gas_basicity
Plot a graph of atomic_number vs ['gas_basicity'] of elements.
Answer:
2022-09-09T15:49:18.337604 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['gas_basicity']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:18.337604 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol gas_basicity electronic_configuration
atomic_number
1 H NaN 1s
2 He 148.5 1s2
3 Li NaN [He] 2s
4 Be NaN [He] 2s2
5 B NaN [He] 2s2 2p
6 C NaN [He] 2s2 2p2
7 N 318.7 [He] 2s2 2p3
8 O 459.6 [He] 2s2 2p4
9 F 315.1 [He] 2s2 2p5
10 Ne 174.4 [He] 2s2 2p6
11 Na NaN [Ne] 3s
12 Mg 797.3 [Ne] 3s2
13 Al NaN [Ne] 3s2 3p
14 Si 814.1 [Ne] 3s2 3p2
15 P 604.8 [Ne] 3s2 3p3
16 S 640.2 [Ne] 3s2 3p4
17 Cl 490.1 [Ne] 3s2 3p5
18 Ar 346.3 [Ne] 3s2 3p6
19 K NaN [Ar] 4s
20 Ca NaN [Ar] 4s2
21 Sc 892.0 [Ar] 3d 4s2
22 Ti 853.7 [Ar] 3d2 4s2
23 V 836.8 [Ar] 3d3 4s2
24 Cr 768.4 [Ar] 3d5 4s
25 Mn 774.4 [Ar] 3d5 4s2
26 Fe 731.1 [Ar] 3d6 4s2
27 Co 719.8 [Ar] 3d7 4s2
28 Ni 714.1 [Ar] 3d8 4s2
29 Cu 632.4 [Ar] 3d10 4s
30 Zn 586.0 [Ar] 3d10 4s2
31 Ga NaN [Ar] 3d10 4s2 4p
32 Ge NaN [Ar] 3d10 4s2 4p2
33 As NaN [Ar] 3d10 4s2 4p3
34 Se NaN [Ar] 3d10 4s2 4p4
35 Br 531.2 [Ar] 3d10 4s2 4p5
36 Kr 402.4 [Ar] 3d10 4s2 4p6
37 Rb NaN [Kr] 5s
38 Sr NaN [Kr] 5s2
39 Y 945.9 [Kr] 4d 5s2
40 Zr NaN [Kr] 4d2 5s2
41 Nb NaN [Kr] 4d4 5s
42 Mo NaN [Kr] 4d5 5s
43 Tc NaN [Kr] 4d5 5s2
44 Ru 751.4 [Kr] 4d7 5s
45 Rh 745.4 [Kr] 4d8 5s
46 Pd 673.4 [Kr] 4d10
47 Ag NaN [Kr] 4d10 5s
48 Cd NaN [Kr] 4d10 5s2
49 In NaN [Kr] 4d10 5s2 5p
50 Sn NaN [Kr] 4d10 5s2 5p2
51 Sb NaN [Kr] 4d10 5s2 5p3
52 Te NaN [Kr] 4d10 5s2 5p4
53 I 583.5 [Kr] 4d10 5s2 5p5
54 Xe 478.1 [Kr] 4d10 5s2 5p6
55 Cs NaN [Xe] 6s
56 Ba NaN [Xe] 6s2
57 La 991.9 [Xe] 5d 6s2
58 Ce NaN [Xe] 4f 5d 6s2
59 Pr NaN [Xe] 4f3 6s2
60 Nd NaN [Xe] 4f4 6s2
61 Pm NaN [Xe] 4f5 6s2
62 Sm NaN [Xe] 4f6 6s2
63 Eu NaN [Xe] 4f7 6s2
64 Gd NaN [Xe] 4f7 5d 6s2
65 Tb NaN [Xe] 4f9 6s2
66 Dy NaN [Xe] 4f10 6s2
67 Ho NaN [Xe] 4f11 6s2
68 Er NaN [Xe] 4f12 6s2
69 Tm NaN [Xe] 4f13 6s2
70 Yb NaN [Xe] 4f14 6s2
71 Lu 970.6 [Xe] 4f14 5d 6s2
72 Hf NaN [Xe] 4f14 5d2 6s2
73 Ta NaN [Xe] 4f14 5d3 6s2
74 W NaN [Xe] 4f14 5d4 6s2
75 Re NaN [Xe] 4f14 5d5 6s2
76 Os NaN [Xe] 4f14 5d6 6s2
77 Ir NaN [Xe] 4f14 5d7 6s2
78 Pt NaN [Xe] 4f14 5d9 6s
79 Au NaN [Xe] 4f14 5d10 6s
80 Hg NaN [Xe] 4f14 5d10 6s2
81 Tl NaN [Xe] 4f14 5d10 6s2 6p
82 Pb NaN [Xe] 4f14 5d10 6s2 6p2
83 Bi NaN [Xe] 4f14 5d10 6s2 6p3
84 Po NaN [Xe] 4f14 5d10 6s2 6p4
85 At NaN [Xe] 4f14 5d10 6s2 6p5
86 Rn NaN [Xe] 4f14 5d10 6s2 6p6
87 Fr NaN [Rn] 7s
88 Ra NaN [Rn] 7s2
89 Ac NaN [Rn] 6d 7s2
90 Th NaN [Rn] 6d2 7s2
91 Pa NaN [Rn] 5f2 6d 7s2
92 U 973.2 [Rn] 5f3 6d 7s2
93 Np NaN [Rn] 5f4 6d 7s2
94 Pu NaN [Rn] 5f6 7s2
95 Am NaN [Rn] 5f7 7s2
96 Cm NaN [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf NaN [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm NaN [Rn] 5f12 7s2
101 Md NaN [Rn] 5f13 7s2
102 No NaN [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og NaN [Rn] 5f14 6d10 7s2 7p6

problem_type: 15/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_thermal_conductivity
Plot a graph of atomic_number vs ['electron_affinity'] of elements.
Answer:
2022-09-09T15:49:19.806981 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['thermal_conductivity', 'electron_affinity']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:19.806981 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol electron_affinity electronic_configuration
atomic_number
1 H 0.754195 1s
2 He -19.700000 1s2
3 Li 0.618049 [He] 2s
4 Be -2.400000 [He] 2s2
5 B 0.279723 [He] 2s2 2p
6 C 1.262119 [He] 2s2 2p2
7 N -1.400000 [He] 2s2 2p3
8 O 1.461113 [He] 2s2 2p4
9 F 3.401190 [He] 2s2 2p5
10 Ne NaN [He] 2s2 2p6
11 Na 0.547926 [Ne] 3s
12 Mg NaN [Ne] 3s2
13 Al 0.432830 [Ne] 3s2 3p
14 Si 1.389521 [Ne] 3s2 3p2
15 P 0.746607 [Ne] 3s2 3p3
16 S 2.077104 [Ne] 3s2 3p4
17 Cl 3.612725 [Ne] 3s2 3p5
18 Ar -11.500000 [Ne] 3s2 3p6
19 K 0.501470 [Ar] 4s
20 Ca 0.024550 [Ar] 4s2
21 Sc 0.188000 [Ar] 3d 4s2
22 Ti 0.079000 [Ar] 3d2 4s2
23 V 0.525000 [Ar] 3d3 4s2
24 Cr 0.666000 [Ar] 3d5 4s
25 Mn NaN [Ar] 3d5 4s2
26 Fe 0.151000 [Ar] 3d6 4s2
27 Co 0.662256 [Ar] 3d7 4s2
28 Ni 1.156000 [Ar] 3d8 4s2
29 Cu 1.235000 [Ar] 3d10 4s
30 Zn NaN [Ar] 3d10 4s2
31 Ga 0.430000 [Ar] 3d10 4s2 4p
32 Ge 1.232712 [Ar] 3d10 4s2 4p2
33 As 0.804000 [Ar] 3d10 4s2 4p3
34 Se 2.020670 [Ar] 3d10 4s2 4p4
35 Br 3.363588 [Ar] 3d10 4s2 4p5
36 Kr NaN [Ar] 3d10 4s2 4p6
37 Rb 0.485920 [Kr] 5s
38 Sr 0.048000 [Kr] 5s2
39 Y 0.307000 [Kr] 4d 5s2
40 Zr 0.426000 [Kr] 4d2 5s2
41 Nb 0.917406 [Kr] 4d4 5s
42 Mo 0.748000 [Kr] 4d5 5s
43 Tc 0.550000 [Kr] 4d5 5s2
44 Ru 1.050000 [Kr] 4d7 5s
45 Rh 1.137000 [Kr] 4d8 5s
46 Pd 0.562000 [Kr] 4d10
47 Ag 1.302000 [Kr] 4d10 5s
48 Cd NaN [Kr] 4d10 5s2
49 In 0.300000 [Kr] 4d10 5s2 5p
50 Sn 1.112067 [Kr] 4d10 5s2 5p2
51 Sb 1.046000 [Kr] 4d10 5s2 5p3
52 Te 1.970876 [Kr] 4d10 5s2 5p4
53 I 3.059037 [Kr] 4d10 5s2 5p5
54 Xe -0.056000 [Kr] 4d10 5s2 5p6
55 Cs 0.471626 [Xe] 6s
56 Ba 0.144620 [Xe] 6s2
57 La 0.470000 [Xe] 5d 6s2
58 Ce 0.650000 [Xe] 4f 5d 6s2
59 Pr 0.962000 [Xe] 4f3 6s2
60 Nd 1.916000 [Xe] 4f4 6s2
61 Pm NaN [Xe] 4f5 6s2
62 Sm NaN [Xe] 4f6 6s2
63 Eu 0.864000 [Xe] 4f7 6s2
64 Gd NaN [Xe] 4f7 5d 6s2
65 Tb 1.165000 [Xe] 4f9 6s2
66 Dy 0.352000 [Xe] 4f10 6s2
67 Ho NaN [Xe] 4f11 6s2
68 Er NaN [Xe] 4f12 6s2
69 Tm 1.029000 [Xe] 4f13 6s2
70 Yb -0.020000 [Xe] 4f14 6s2
71 Lu 0.340000 [Xe] 4f14 5d 6s2
72 Hf 0.014000 [Xe] 4f14 5d2 6s2
73 Ta 0.322000 [Xe] 4f14 5d3 6s2
74 W 0.816260 [Xe] 4f14 5d4 6s2
75 Re 0.150000 [Xe] 4f14 5d5 6s2
76 Os 1.100000 [Xe] 4f14 5d6 6s2
77 Ir 1.563800 [Xe] 4f14 5d7 6s2
78 Pt 2.128000 [Xe] 4f14 5d9 6s
79 Au 2.308630 [Xe] 4f14 5d10 6s
80 Hg NaN [Xe] 4f14 5d10 6s2
81 Tl 0.377000 [Xe] 4f14 5d10 6s2 6p
82 Pb 0.356743 [Xe] 4f14 5d10 6s2 6p2
83 Bi 0.942362 [Xe] 4f14 5d10 6s2 6p3
84 Po 1.900000 [Xe] 4f14 5d10 6s2 6p4
85 At 2.800000 [Xe] 4f14 5d10 6s2 6p5
86 Rn NaN [Xe] 4f14 5d10 6s2 6p6
87 Fr 0.486000 [Rn] 7s
88 Ra 0.100000 [Rn] 7s2
89 Ac 0.350000 [Rn] 6d 7s2
90 Th NaN [Rn] 6d2 7s2
91 Pa NaN [Rn] 5f2 6d 7s2
92 U NaN [Rn] 5f3 6d 7s2
93 Np NaN [Rn] 5f4 6d 7s2
94 Pu NaN [Rn] 5f6 7s2
95 Am NaN [Rn] 5f7 7s2
96 Cm NaN [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf NaN [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm NaN [Rn] 5f12 7s2
101 Md NaN [Rn] 5f13 7s2
102 No NaN [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og 0.056000 [Rn] 5f14 6d10 7s2 7p6

problem_type: 16/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_mp_bp
Plot a graph of atomic_number vs ['melting_point'] of elements.
Answer:
2022-09-09T15:49:21.288872 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['melting_point', 'boiling_point']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:21.288872 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol melting_point electronic_configuration
atomic_number
1 H 14.01 1s
2 He 0.95 1s2
3 Li 553.69 [He] 2s
4 Be 1551.00 [He] 2s2
5 B 2573.00 [He] 2s2 2p
6 C 3820.00 [He] 2s2 2p2
7 N 63.29 [He] 2s2 2p3
8 O 54.80 [He] 2s2 2p4
9 F 53.53 [He] 2s2 2p5
10 Ne 48.00 [He] 2s2 2p6
11 Na 370.96 [Ne] 3s
12 Mg 922.00 [Ne] 3s2
13 Al 933.50 [Ne] 3s2 3p
14 Si 1683.00 [Ne] 3s2 3p2
15 P 317.30 [Ne] 3s2 3p3
16 S 386.00 [Ne] 3s2 3p4
17 Cl 172.20 [Ne] 3s2 3p5
18 Ar 83.80 [Ne] 3s2 3p6
19 K 336.80 [Ar] 4s
20 Ca 1112.00 [Ar] 4s2
21 Sc 1814.00 [Ar] 3d 4s2
22 Ti 1933.00 [Ar] 3d2 4s2
23 V 2160.00 [Ar] 3d3 4s2
24 Cr 2130.00 [Ar] 3d5 4s
25 Mn 1517.00 [Ar] 3d5 4s2
26 Fe 1808.00 [Ar] 3d6 4s2
27 Co 1768.00 [Ar] 3d7 4s2
28 Ni 1726.00 [Ar] 3d8 4s2
29 Cu 1356.60 [Ar] 3d10 4s
30 Zn 692.73 [Ar] 3d10 4s2
31 Ga 302.93 [Ar] 3d10 4s2 4p
32 Ge 1210.60 [Ar] 3d10 4s2 4p2
33 As 1090.00 [Ar] 3d10 4s2 4p3
34 Se 490.00 [Ar] 3d10 4s2 4p4
35 Br 265.90 [Ar] 3d10 4s2 4p5
36 Kr 116.60 [Ar] 3d10 4s2 4p6
37 Rb 312.20 [Kr] 5s
38 Sr 1042.00 [Kr] 5s2
39 Y 1795.00 [Kr] 4d 5s2
40 Zr 2125.00 [Kr] 4d2 5s2
41 Nb 2741.00 [Kr] 4d4 5s
42 Mo 2890.00 [Kr] 4d5 5s
43 Tc 2445.00 [Kr] 4d5 5s2
44 Ru 2583.00 [Kr] 4d7 5s
45 Rh 2239.00 [Kr] 4d8 5s
46 Pd 1825.00 [Kr] 4d10
47 Ag 1235.10 [Kr] 4d10 5s
48 Cd 594.10 [Kr] 4d10 5s2
49 In 429.32 [Kr] 4d10 5s2 5p
50 Sn 505.10 [Kr] 4d10 5s2 5p2
51 Sb 903.90 [Kr] 4d10 5s2 5p3
52 Te 722.70 [Kr] 4d10 5s2 5p4
53 I 386.70 [Kr] 4d10 5s2 5p5
54 Xe 161.30 [Kr] 4d10 5s2 5p6
55 Cs 301.60 [Xe] 6s
56 Ba 1002.00 [Xe] 6s2
57 La 1194.00 [Xe] 5d 6s2
58 Ce 1072.00 [Xe] 4f 5d 6s2
59 Pr 1204.00 [Xe] 4f3 6s2
60 Nd 1294.00 [Xe] 4f4 6s2
61 Pm 1441.00 [Xe] 4f5 6s2
62 Sm 1350.00 [Xe] 4f6 6s2
63 Eu 1095.00 [Xe] 4f7 6s2
64 Gd 1586.00 [Xe] 4f7 5d 6s2
65 Tb 1629.00 [Xe] 4f9 6s2
66 Dy 1685.00 [Xe] 4f10 6s2
67 Ho 1747.00 [Xe] 4f11 6s2
68 Er 1802.00 [Xe] 4f12 6s2
69 Tm 1818.00 [Xe] 4f13 6s2
70 Yb 1097.00 [Xe] 4f14 6s2
71 Lu 1936.00 [Xe] 4f14 5d 6s2
72 Hf 2503.00 [Xe] 4f14 5d2 6s2
73 Ta 3269.00 [Xe] 4f14 5d3 6s2
74 W 3680.00 [Xe] 4f14 5d4 6s2
75 Re 3453.00 [Xe] 4f14 5d5 6s2
76 Os 3327.00 [Xe] 4f14 5d6 6s2
77 Ir 2683.00 [Xe] 4f14 5d7 6s2
78 Pt 2045.00 [Xe] 4f14 5d9 6s
79 Au 1337.58 [Xe] 4f14 5d10 6s
80 Hg 234.28 [Xe] 4f14 5d10 6s2
81 Tl 576.60 [Xe] 4f14 5d10 6s2 6p
82 Pb 600.65 [Xe] 4f14 5d10 6s2 6p2
83 Bi 544.50 [Xe] 4f14 5d10 6s2 6p3
84 Po 527.00 [Xe] 4f14 5d10 6s2 6p4
85 At 575.00 [Xe] 4f14 5d10 6s2 6p5
86 Rn 202.00 [Xe] 4f14 5d10 6s2 6p6
87 Fr 300.00 [Rn] 7s
88 Ra 973.00 [Rn] 7s2
89 Ac 1320.00 [Rn] 6d 7s2
90 Th 2028.00 [Rn] 6d2 7s2
91 Pa 2113.00 [Rn] 5f2 6d 7s2
92 U 1405.50 [Rn] 5f3 6d 7s2
93 Np 913.00 [Rn] 5f4 6d 7s2
94 Pu 914.00 [Rn] 5f6 7s2
95 Am 1267.00 [Rn] 5f7 7s2
96 Cm 1340.00 [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf 900.00 [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm 1800.00 [Rn] 5f12 7s2
101 Md 1100.00 [Rn] 5f13 7s2
102 No 1100.00 [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og NaN [Rn] 5f14 6d10 7s2 7p6

problem_type: 17/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_heats
Plot a graph of atomic_number vs ['fusion_heat'] of elements.
Answer:
2022-09-09T15:49:22.933316 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['evaporation_heat', 'fusion_heat', 'specific_heat', 'heat_of_formation']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:22.933316 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol fusion_heat electronic_configuration
atomic_number
1 H 0.117 1s
2 He NaN 1s2
3 Li 2.890 [He] 2s
4 Be 12.210 [He] 2s2
5 B 23.600 [He] 2s2 2p
6 C NaN [He] 2s2 2p2
7 N NaN [He] 2s2 2p3
8 O NaN [He] 2s2 2p4
9 F 0.510 [He] 2s2 2p5
10 Ne NaN [He] 2s2 2p6
11 Na 2.640 [Ne] 3s
12 Mg 9.200 [Ne] 3s2
13 Al 10.750 [Ne] 3s2 3p
14 Si 50.600 [Ne] 3s2 3p2
15 P 2.510 [Ne] 3s2 3p3
16 S 1.230 [Ne] 3s2 3p4
17 Cl 6.410 [Ne] 3s2 3p5
18 Ar NaN [Ne] 3s2 3p6
19 K 102.500 [Ar] 4s
20 Ca 9.200 [Ar] 4s2
21 Sc 15.800 [Ar] 3d 4s2
22 Ti 18.800 [Ar] 3d2 4s2
23 V 17.500 [Ar] 3d3 4s2
24 Cr 21.000 [Ar] 3d5 4s
25 Mn 13.400 [Ar] 3d5 4s2
26 Fe 13.800 [Ar] 3d6 4s2
27 Co 15.480 [Ar] 3d7 4s2
28 Ni 17.610 [Ar] 3d8 4s2
29 Cu 13.010 [Ar] 3d10 4s
30 Zn 7.280 [Ar] 3d10 4s2
31 Ga 5.590 [Ar] 3d10 4s2 4p
32 Ge 36.800 [Ar] 3d10 4s2 4p2
33 As NaN [Ar] 3d10 4s2 4p3
34 Se 5.230 [Ar] 3d10 4s2 4p4
35 Br 10.570 [Ar] 3d10 4s2 4p5
36 Kr NaN [Ar] 3d10 4s2 4p6
37 Rb 2.200 [Kr] 5s
38 Sr 9.200 [Kr] 5s2
39 Y 11.500 [Kr] 4d 5s2
40 Zr 19.200 [Kr] 4d2 5s2
41 Nb 26.800 [Kr] 4d4 5s
42 Mo 28.000 [Kr] 4d5 5s
43 Tc 23.800 [Kr] 4d5 5s2
44 Ru 25.500 [Kr] 4d7 5s
45 Rh 21.800 [Kr] 4d8 5s
46 Pd 17.240 [Kr] 4d10
47 Ag 11.950 [Kr] 4d10 5s
48 Cd 6.110 [Kr] 4d10 5s2
49 In 3.240 [Kr] 4d10 5s2 5p
50 Sn 7.070 [Kr] 4d10 5s2 5p2
51 Sb 20.080 [Kr] 4d10 5s2 5p3
52 Te 17.910 [Kr] 4d10 5s2 5p4
53 I 15.520 [Kr] 4d10 5s2 5p5
54 Xe NaN [Kr] 4d10 5s2 5p6
55 Cs 2.090 [Xe] 6s
56 Ba 7.660 [Xe] 6s2
57 La 8.500 [Xe] 5d 6s2
58 Ce 5.200 [Xe] 4f 5d 6s2
59 Pr 11.300 [Xe] 4f3 6s2
60 Nd 7.100 [Xe] 4f4 6s2
61 Pm NaN [Xe] 4f5 6s2
62 Sm 8.900 [Xe] 4f6 6s2
63 Eu NaN [Xe] 4f7 6s2
64 Gd NaN [Xe] 4f7 5d 6s2
65 Tb NaN [Xe] 4f9 6s2
66 Dy NaN [Xe] 4f10 6s2
67 Ho NaN [Xe] 4f11 6s2
68 Er NaN [Xe] 4f12 6s2
69 Tm NaN [Xe] 4f13 6s2
70 Yb 3.350 [Xe] 4f14 6s2
71 Lu NaN [Xe] 4f14 5d 6s2
72 Hf 25.100 [Xe] 4f14 5d2 6s2
73 Ta 24.700 [Xe] 4f14 5d3 6s2
74 W 35.000 [Xe] 4f14 5d4 6s2
75 Re 34.000 [Xe] 4f14 5d5 6s2
76 Os 31.700 [Xe] 4f14 5d6 6s2
77 Ir 27.610 [Xe] 4f14 5d7 6s2
78 Pt 21.760 [Xe] 4f14 5d9 6s
79 Au 12.680 [Xe] 4f14 5d10 6s
80 Hg 2.295 [Xe] 4f14 5d10 6s2
81 Tl 4.310 [Xe] 4f14 5d10 6s2 6p
82 Pb 4.770 [Xe] 4f14 5d10 6s2 6p2
83 Bi 11.000 [Xe] 4f14 5d10 6s2 6p3
84 Po 10.000 [Xe] 4f14 5d10 6s2 6p4
85 At NaN [Xe] 4f14 5d10 6s2 6p5
86 Rn NaN [Xe] 4f14 5d10 6s2 6p6
87 Fr 15.000 [Rn] 7s
88 Ra 9.600 [Rn] 7s2
89 Ac 10.500 [Rn] 6d 7s2
90 Th 16.110 [Rn] 6d2 7s2
91 Pa 16.700 [Rn] 5f2 6d 7s2
92 U 12.600 [Rn] 5f3 6d 7s2
93 Np 9.600 [Rn] 5f4 6d 7s2
94 Pu 2.800 [Rn] 5f6 7s2
95 Am 10.000 [Rn] 5f7 7s2
96 Cm NaN [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf NaN [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm NaN [Rn] 5f12 7s2
101 Md NaN [Rn] 5f13 7s2
102 No NaN [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og NaN [Rn] 5f14 6d10 7s2 7p6

problem_type: 18/20 (loop 0/0)

Problem Template: _problem_atomic_number_vs_abundance
Plot a graph of atomic_number vs ['abundance_sea'] of elements.
Answer:
2022-09-09T15:49:24.796298 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Solution:

Optional Input Parameters


y_column
A list of one or more values from
['abundance_crust', 'abundance_sea']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118
2022-09-09T15:49:24.796298 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

symbol abundance_sea electronic_configuration
atomic_number
1 H 1.080000e+05 1s
2 He 7.000000e-06 1s2
3 Li 1.800000e-01 [He] 2s
4 Be 5.600000e-06 [He] 2s2
5 B 4.440000e+00 [He] 2s2 2p
6 C 2.800000e+01 [He] 2s2 2p2
7 N 5.000000e-01 [He] 2s2 2p3
8 O 8.570000e+05 [He] 2s2 2p4
9 F 1.300000e+00 [He] 2s2 2p5
10 Ne 1.200000e-04 [He] 2s2 2p6
11 Na 1.080000e+04 [Ne] 3s
12 Mg 1.290000e+03 [Ne] 3s2
13 Al 2.000000e-03 [Ne] 3s2 3p
14 Si 2.200000e+00 [Ne] 3s2 3p2
15 P 6.000000e-02 [Ne] 3s2 3p3
16 S 9.050000e+02 [Ne] 3s2 3p4
17 Cl 1.940000e+04 [Ne] 3s2 3p5
18 Ar 4.500000e-01 [Ne] 3s2 3p6
19 K 3.990000e+02 [Ar] 4s
20 Ca 4.120000e+02 [Ar] 4s2
21 Sc 6.000000e-07 [Ar] 3d 4s2
22 Ti 1.000000e-03 [Ar] 3d2 4s2
23 V 2.500000e-03 [Ar] 3d3 4s2
24 Cr 3.000000e-04 [Ar] 3d5 4s
25 Mn 2.000000e-04 [Ar] 3d5 4s2
26 Fe 2.000000e-03 [Ar] 3d6 4s2
27 Co 2.000000e-05 [Ar] 3d7 4s2
28 Ni 5.600000e-04 [Ar] 3d8 4s2
29 Cu 2.500000e-04 [Ar] 3d10 4s
30 Zn 4.900000e-03 [Ar] 3d10 4s2
31 Ga 3.000000e-05 [Ar] 3d10 4s2 4p
32 Ge 5.000000e-05 [Ar] 3d10 4s2 4p2
33 As 3.700000e-03 [Ar] 3d10 4s2 4p3
34 Se 2.000000e-04 [Ar] 3d10 4s2 4p4
35 Br 6.730000e+01 [Ar] 3d10 4s2 4p5
36 Kr 2.100000e-04 [Ar] 3d10 4s2 4p6
37 Rb 1.200000e-01 [Kr] 5s
38 Sr 7.900000e+00 [Kr] 5s2
39 Y 1.300000e-05 [Kr] 4d 5s2
40 Zr 3.000000e-05 [Kr] 4d2 5s2
41 Nb 1.000000e-05 [Kr] 4d4 5s
42 Mo 1.000000e-02 [Kr] 4d5 5s
43 Tc NaN [Kr] 4d5 5s2
44 Ru 7.000000e-07 [Kr] 4d7 5s
45 Rh NaN [Kr] 4d8 5s
46 Pd NaN [Kr] 4d10
47 Ag 4.000000e-05 [Kr] 4d10 5s
48 Cd 1.100000e-04 [Kr] 4d10 5s2
49 In 2.000000e-02 [Kr] 4d10 5s2 5p
50 Sn 4.000000e-06 [Kr] 4d10 5s2 5p2
51 Sb 2.400000e-04 [Kr] 4d10 5s2 5p3
52 Te NaN [Kr] 4d10 5s2 5p4
53 I 6.000000e-02 [Kr] 4d10 5s2 5p5
54 Xe 5.000000e-05 [Kr] 4d10 5s2 5p6
55 Cs 3.000000e-04 [Xe] 6s
56 Ba 1.300000e-02 [Xe] 6s2
57 La 3.400000e-06 [Xe] 5d 6s2
58 Ce 1.200000e-06 [Xe] 4f 5d 6s2
59 Pr 6.400000e-07 [Xe] 4f3 6s2
60 Nd 2.800000e-06 [Xe] 4f4 6s2
61 Pm NaN [Xe] 4f5 6s2
62 Sm 4.500000e-07 [Xe] 4f6 6s2
63 Eu 1.300000e-07 [Xe] 4f7 6s2
64 Gd 7.000000e-07 [Xe] 4f7 5d 6s2
65 Tb 1.400000e-07 [Xe] 4f9 6s2
66 Dy 9.100000e-07 [Xe] 4f10 6s2
67 Ho 2.200000e-07 [Xe] 4f11 6s2
68 Er 8.700000e-07 [Xe] 4f12 6s2
69 Tm 1.700000e-07 [Xe] 4f13 6s2
70 Yb 8.200000e-07 [Xe] 4f14 6s2
71 Lu 1.500000e-07 [Xe] 4f14 5d 6s2
72 Hf 7.000000e-06 [Xe] 4f14 5d2 6s2
73 Ta 2.000000e-06 [Xe] 4f14 5d3 6s2
74 W 1.000000e-04 [Xe] 4f14 5d4 6s2
75 Re 4.000000e-06 [Xe] 4f14 5d5 6s2
76 Os NaN [Xe] 4f14 5d6 6s2
77 Ir NaN [Xe] 4f14 5d7 6s2
78 Pt NaN [Xe] 4f14 5d9 6s
79 Au 4.000000e-06 [Xe] 4f14 5d10 6s
80 Hg 3.000000e-05 [Xe] 4f14 5d10 6s2
81 Tl 1.900000e-05 [Xe] 4f14 5d10 6s2 6p
82 Pb 3.000000e-05 [Xe] 4f14 5d10 6s2 6p2
83 Bi 2.000000e-05 [Xe] 4f14 5d10 6s2 6p3
84 Po 1.500000e-14 [Xe] 4f14 5d10 6s2 6p4
85 At NaN [Xe] 4f14 5d10 6s2 6p5
86 Rn 6.000000e-16 [Xe] 4f14 5d10 6s2 6p6
87 Fr NaN [Rn] 7s
88 Ra 8.900000e-11 [Rn] 7s2
89 Ac NaN [Rn] 6d 7s2
90 Th 1.000000e-06 [Rn] 6d2 7s2
91 Pa 5.000000e-11 [Rn] 5f2 6d 7s2
92 U 3.200000e-03 [Rn] 5f3 6d 7s2
93 Np NaN [Rn] 5f4 6d 7s2
94 Pu NaN [Rn] 5f6 7s2
95 Am NaN [Rn] 5f7 7s2
96 Cm NaN [Rn] 5f7 6d 7s2
97 Bk NaN [Rn] 5f9 7s2
98 Cf NaN [Rn] 5f10 7s2
99 Es NaN [Rn] 5f11 7s2
100 Fm NaN [Rn] 5f12 7s2
101 Md NaN [Rn] 5f13 7s2
102 No NaN [Rn] 5f14 7s2
103 Lr NaN [Rn] 5f14 6d 7s2
104 Rf NaN [Rn] 5f14 6d2 7s2
105 Db NaN [Rn] 5f14 6d3 7s2
106 Sg NaN [Rn] 5f14 6d4 7s2
107 Bh NaN [Rn] 5f14 6d5 7s2
108 Hs NaN [Rn] 5f14 6d6 7s2
109 Mt NaN [Rn] 5f14 6d7 7s2
110 Ds NaN [Rn] 5f14 6d9 7s1
111 Rg NaN [Rn] 5f14 6d10 7s1
112 Cn NaN [Rn] 5f14 6d10 7s2
113 Nh NaN [Rn] 5f14 6d10 7s2 7p1
114 Fl NaN [Rn] 5f14 6d10 7s2 7p2
115 Mc NaN [Rn] 5f14 6d10 7s2 7p3
116 Lv NaN [Rn] 5f14 6d10 7s2 7p4
117 Ts NaN [Rn] 5f14 6d10 7s2 7p5
118 Og NaN [Rn] 5f14 6d10 7s2 7p6

problem_type: 19/20 (loop 0/0)

Problem Template: _problem_list_lattice_structure

List lattice structure of elements.
Answer:

atomic_number name electronic_configuration lattice_structure
0 1 Hydrogen 1s HEX
1 3 Lithium [He] 2s BCC
2 11 Sodium [Ne] 3s BCC
3 19 Potassium [Ar] 4s BCC
4 37 Rubidium [Kr] 5s BCC
5 55 Cesium [Xe] 6s BCC
6 87 Francium [Rn] 7s BCC
7 2 Helium 1s2 HEX
8 10 Neon [He] 2s2 2p6 FCC
9 18 Argon [Ne] 3s2 3p6 FCC
10 36 Krypton [Ar] 3d10 4s2 4p6 FCC
11 54 Xenon [Kr] 4d10 5s2 5p6 FCC
12 86 Radon [Xe] 4f14 5d10 6s2 6p6 FCC
13 118 Oganesson [Rn] 5f14 6d10 7s2 7p6 None
14 4 Beryllium [He] 2s2 HEX
15 12 Magnesium [Ne] 3s2 HEX
16 20 Calcium [Ar] 4s2 FCC
17 38 Strontium [Kr] 5s2 FCC
18 56 Barium [Xe] 6s2 BCC
19 88 Radium [Rn] 7s2 None
20 5 Boron [He] 2s2 2p TET
21 13 Aluminum [Ne] 3s2 3p FCC
22 31 Gallium [Ar] 3d10 4s2 4p ORC
23 49 Indium [Kr] 4d10 5s2 5p TET
24 81 Thallium [Xe] 4f14 5d10 6s2 6p HEX
25 113 Nihonium [Rn] 5f14 6d10 7s2 7p1 None
26 6 Carbon [He] 2s2 2p2 DIA
27 14 Silicon [Ne] 3s2 3p2 DIA
28 32 Germanium [Ar] 3d10 4s2 4p2 DIA
29 50 Tin [Kr] 4d10 5s2 5p2 TET
30 82 Lead [Xe] 4f14 5d10 6s2 6p2 FCC
31 114 Flerovium [Rn] 5f14 6d10 7s2 7p2 None
32 7 Nitrogen [He] 2s2 2p3 HEX
33 15 Phosphorus [Ne] 3s2 3p3 CUB
34 33 Arsenic [Ar] 3d10 4s2 4p3 RHL
35 51 Antimony [Kr] 4d10 5s2 5p3 RHL
36 83 Bismuth [Xe] 4f14 5d10 6s2 6p3 RHL
37 115 Moscovium [Rn] 5f14 6d10 7s2 7p3 None
38 8 Oxygen [He] 2s2 2p4 CUB
39 16 Sulfur [Ne] 3s2 3p4 ORC
40 34 Selenium [Ar] 3d10 4s2 4p4 HEX
41 52 Tellurium [Kr] 4d10 5s2 5p4 HEX
42 84 Polonium [Xe] 4f14 5d10 6s2 6p4 SC
43 116 Livermorium [Rn] 5f14 6d10 7s2 7p4 None
44 9 Fluorine [He] 2s2 2p5 MCL
45 17 Chlorine [Ne] 3s2 3p5 ORC
46 35 Bromine [Ar] 3d10 4s2 4p5 ORC
47 53 Iodine [Kr] 4d10 5s2 5p5 ORC
48 85 Astatine [Xe] 4f14 5d10 6s2 6p5 None
49 117 Tennessine [Rn] 5f14 6d10 7s2 7p5 None
50 21 Scandium [Ar] 3d 4s2 HEX
51 39 Yttrium [Kr] 4d 5s2 HEX
52 57 Lanthanum [Xe] 5d 6s2 HEX
53 89 Actinium [Rn] 6d 7s2 FCC
54 22 Titanium [Ar] 3d2 4s2 HEX
55 40 Zirconium [Kr] 4d2 5s2 HEX
56 72 Hafnium [Xe] 4f14 5d2 6s2 HEX
57 104 Rutherfordium [Rn] 5f14 6d2 7s2 None
58 23 Vanadium [Ar] 3d3 4s2 BCC
59 41 Niobium [Kr] 4d4 5s BCC
60 73 Tantalum [Xe] 4f14 5d3 6s2 BCC
61 105 Dubnium [Rn] 5f14 6d3 7s2 None
62 24 Chromium [Ar] 3d5 4s BCC
63 42 Molybdenum [Kr] 4d5 5s BCC
64 74 Tungsten [Xe] 4f14 5d4 6s2 BCC
65 106 Seaborgium [Rn] 5f14 6d4 7s2 None
66 25 Manganese [Ar] 3d5 4s2 CUB
67 43 Technetium [Kr] 4d5 5s2 HEX
68 75 Rhenium [Xe] 4f14 5d5 6s2 HEX
69 107 Bohrium [Rn] 5f14 6d5 7s2 None
70 26 Iron [Ar] 3d6 4s2 BCC
71 44 Ruthenium [Kr] 4d7 5s HEX
72 76 Osmium [Xe] 4f14 5d6 6s2 HEX
73 108 Hassium [Rn] 5f14 6d6 7s2 None
74 27 Cobalt [Ar] 3d7 4s2 HEX
75 45 Rhodium [Kr] 4d8 5s FCC
76 77 Iridium [Xe] 4f14 5d7 6s2 FCC
77 109 Meitnerium [Rn] 5f14 6d7 7s2 None
78 28 Nickel [Ar] 3d8 4s2 FCC
79 46 Palladium [Kr] 4d10 FCC
80 78 Platinum [Xe] 4f14 5d9 6s FCC
81 110 Darmstadtium [Rn] 5f14 6d9 7s1 None
82 29 Copper [Ar] 3d10 4s FCC
83 47 Silver [Kr] 4d10 5s FCC
84 79 Gold [Xe] 4f14 5d10 6s FCC
85 111 Roentgenium [Rn] 5f14 6d10 7s1 None
86 30 Zinc [Ar] 3d10 4s2 HEX
87 48 Cadmium [Kr] 4d10 5s2 HEX
88 80 Mercury [Xe] 4f14 5d10 6s2 RHL
89 112 Copernicium [Rn] 5f14 6d10 7s2 None
90 58 Cerium [Xe] 4f 5d 6s2 FCC
91 59 Praseodymium [Xe] 4f3 6s2 HEX
92 60 Neodymium [Xe] 4f4 6s2 HEX
93 61 Promethium [Xe] 4f5 6s2 None
94 62 Samarium [Xe] 4f6 6s2 RHL
95 63 Europium [Xe] 4f7 6s2 BCC
96 64 Gadolinium [Xe] 4f7 5d 6s2 HEX
97 65 Terbium [Xe] 4f9 6s2 HEX
98 66 Dysprosium [Xe] 4f10 6s2 HEX
99 67 Holmium [Xe] 4f11 6s2 HEX
100 68 Erbium [Xe] 4f12 6s2 HEX
101 69 Thulium [Xe] 4f13 6s2 HEX
102 70 Ytterbium [Xe] 4f14 6s2 FCC
103 71 Lutetium [Xe] 4f14 5d 6s2 HEX
104 90 Thorium [Rn] 6d2 7s2 FCC
105 91 Protactinium [Rn] 5f2 6d 7s2 TET
106 92 Uranium [Rn] 5f3 6d 7s2 ORC
107 93 Neptunium [Rn] 5f4 6d 7s2 ORC
108 94 Plutonium [Rn] 5f6 7s2 MCL
109 95 Americium [Rn] 5f7 7s2 None
110 96 Curium [Rn] 5f7 6d 7s2 None
111 97 Berkelium [Rn] 5f9 7s2 None
112 98 Californium [Rn] 5f10 7s2 None
113 99 Einsteinium [Rn] 5f11 7s2 None
114 100 Fermium [Rn] 5f12 7s2 None
115 101 Mendelevium [Rn] 5f13 7s2 None
116 102 Nobelium [Rn] 5f14 7s2 None
117 103 Lawrencium [Rn] 5f14 6d 7s2 None

Solution:

atomic_number name electronic_configuration lattice_structure
0 1 Hydrogen 1s HEX
1 3 Lithium [He] 2s BCC
2 11 Sodium [Ne] 3s BCC
3 19 Potassium [Ar] 4s BCC
4 37 Rubidium [Kr] 5s BCC
5 55 Cesium [Xe] 6s BCC
6 87 Francium [Rn] 7s BCC
7 2 Helium 1s2 HEX
8 10 Neon [He] 2s2 2p6 FCC
9 18 Argon [Ne] 3s2 3p6 FCC
10 36 Krypton [Ar] 3d10 4s2 4p6 FCC
11 54 Xenon [Kr] 4d10 5s2 5p6 FCC
12 86 Radon [Xe] 4f14 5d10 6s2 6p6 FCC
13 118 Oganesson [Rn] 5f14 6d10 7s2 7p6 None
14 4 Beryllium [He] 2s2 HEX
15 12 Magnesium [Ne] 3s2 HEX
16 20 Calcium [Ar] 4s2 FCC
17 38 Strontium [Kr] 5s2 FCC
18 56 Barium [Xe] 6s2 BCC
19 88 Radium [Rn] 7s2 None
20 5 Boron [He] 2s2 2p TET
21 13 Aluminum [Ne] 3s2 3p FCC
22 31 Gallium [Ar] 3d10 4s2 4p ORC
23 49 Indium [Kr] 4d10 5s2 5p TET
24 81 Thallium [Xe] 4f14 5d10 6s2 6p HEX
25 113 Nihonium [Rn] 5f14 6d10 7s2 7p1 None
26 6 Carbon [He] 2s2 2p2 DIA
27 14 Silicon [Ne] 3s2 3p2 DIA
28 32 Germanium [Ar] 3d10 4s2 4p2 DIA
29 50 Tin [Kr] 4d10 5s2 5p2 TET
30 82 Lead [Xe] 4f14 5d10 6s2 6p2 FCC
31 114 Flerovium [Rn] 5f14 6d10 7s2 7p2 None
32 7 Nitrogen [He] 2s2 2p3 HEX
33 15 Phosphorus [Ne] 3s2 3p3 CUB
34 33 Arsenic [Ar] 3d10 4s2 4p3 RHL
35 51 Antimony [Kr] 4d10 5s2 5p3 RHL
36 83 Bismuth [Xe] 4f14 5d10 6s2 6p3 RHL
37 115 Moscovium [Rn] 5f14 6d10 7s2 7p3 None
38 8 Oxygen [He] 2s2 2p4 CUB
39 16 Sulfur [Ne] 3s2 3p4 ORC
40 34 Selenium [Ar] 3d10 4s2 4p4 HEX
41 52 Tellurium [Kr] 4d10 5s2 5p4 HEX
42 84 Polonium [Xe] 4f14 5d10 6s2 6p4 SC
43 116 Livermorium [Rn] 5f14 6d10 7s2 7p4 None
44 9 Fluorine [He] 2s2 2p5 MCL
45 17 Chlorine [Ne] 3s2 3p5 ORC
46 35 Bromine [Ar] 3d10 4s2 4p5 ORC
47 53 Iodine [Kr] 4d10 5s2 5p5 ORC
48 85 Astatine [Xe] 4f14 5d10 6s2 6p5 None
49 117 Tennessine [Rn] 5f14 6d10 7s2 7p5 None
50 21 Scandium [Ar] 3d 4s2 HEX
51 39 Yttrium [Kr] 4d 5s2 HEX
52 57 Lanthanum [Xe] 5d 6s2 HEX
53 89 Actinium [Rn] 6d 7s2 FCC
54 22 Titanium [Ar] 3d2 4s2 HEX
55 40 Zirconium [Kr] 4d2 5s2 HEX
56 72 Hafnium [Xe] 4f14 5d2 6s2 HEX
57 104 Rutherfordium [Rn] 5f14 6d2 7s2 None
58 23 Vanadium [Ar] 3d3 4s2 BCC
59 41 Niobium [Kr] 4d4 5s BCC
60 73 Tantalum [Xe] 4f14 5d3 6s2 BCC
61 105 Dubnium [Rn] 5f14 6d3 7s2 None
62 24 Chromium [Ar] 3d5 4s BCC
63 42 Molybdenum [Kr] 4d5 5s BCC
64 74 Tungsten [Xe] 4f14 5d4 6s2 BCC
65 106 Seaborgium [Rn] 5f14 6d4 7s2 None
66 25 Manganese [Ar] 3d5 4s2 CUB
67 43 Technetium [Kr] 4d5 5s2 HEX
68 75 Rhenium [Xe] 4f14 5d5 6s2 HEX
69 107 Bohrium [Rn] 5f14 6d5 7s2 None
70 26 Iron [Ar] 3d6 4s2 BCC
71 44 Ruthenium [Kr] 4d7 5s HEX
72 76 Osmium [Xe] 4f14 5d6 6s2 HEX
73 108 Hassium [Rn] 5f14 6d6 7s2 None
74 27 Cobalt [Ar] 3d7 4s2 HEX
75 45 Rhodium [Kr] 4d8 5s FCC
76 77 Iridium [Xe] 4f14 5d7 6s2 FCC
77 109 Meitnerium [Rn] 5f14 6d7 7s2 None
78 28 Nickel [Ar] 3d8 4s2 FCC
79 46 Palladium [Kr] 4d10 FCC
80 78 Platinum [Xe] 4f14 5d9 6s FCC
81 110 Darmstadtium [Rn] 5f14 6d9 7s1 None
82 29 Copper [Ar] 3d10 4s FCC
83 47 Silver [Kr] 4d10 5s FCC
84 79 Gold [Xe] 4f14 5d10 6s FCC
85 111 Roentgenium [Rn] 5f14 6d10 7s1 None
86 30 Zinc [Ar] 3d10 4s2 HEX
87 48 Cadmium [Kr] 4d10 5s2 HEX
88 80 Mercury [Xe] 4f14 5d10 6s2 RHL
89 112 Copernicium [Rn] 5f14 6d10 7s2 None
90 58 Cerium [Xe] 4f 5d 6s2 FCC
91 59 Praseodymium [Xe] 4f3 6s2 HEX
92 60 Neodymium [Xe] 4f4 6s2 HEX
93 61 Promethium [Xe] 4f5 6s2 None
94 62 Samarium [Xe] 4f6 6s2 RHL
95 63 Europium [Xe] 4f7 6s2 BCC
96 64 Gadolinium [Xe] 4f7 5d 6s2 HEX
97 65 Terbium [Xe] 4f9 6s2 HEX
98 66 Dysprosium [Xe] 4f10 6s2 HEX
99 67 Holmium [Xe] 4f11 6s2 HEX
100 68 Erbium [Xe] 4f12 6s2 HEX
101 69 Thulium [Xe] 4f13 6s2 HEX
102 70 Ytterbium [Xe] 4f14 6s2 FCC
103 71 Lutetium [Xe] 4f14 5d 6s2 HEX
104 90 Thorium [Rn] 6d2 7s2 FCC
105 91 Protactinium [Rn] 5f2 6d 7s2 TET
106 92 Uranium [Rn] 5f3 6d 7s2 ORC
107 93 Neptunium [Rn] 5f4 6d 7s2 ORC
108 94 Plutonium [Rn] 5f6 7s2 MCL
109 95 Americium [Rn] 5f7 7s2 None
110 96 Curium [Rn] 5f7 6d 7s2 None
111 97 Berkelium [Rn] 5f9 7s2 None
112 98 Californium [Rn] 5f10 7s2 None
113 99 Einsteinium [Rn] 5f11 7s2 None
114 100 Fermium [Rn] 5f12 7s2 None
115 101 Mendelevium [Rn] 5f13 7s2 None
116 102 Nobelium [Rn] 5f14 7s2 None
117 103 Lawrencium [Rn] 5f14 6d 7s2 None


Also see:
Important lattice structures
Important lattice structures (pdf)
Types of lattices for additive manufacturing

problem_type: 20/20 (loop 0/0)

Problem Template: _problem_elements_descriptions

Description of elements.
Answer:

symbol name cas description electronic_configuration
atomic_number
1 H Hydrogen 1333-74-0 Colourless, odourless gaseous chemical element. Lightest and most abundant element in the universe. Present in water and in all organic compounds. Chemically reacts with most elements. Discovered by Henry Cavendish in 1776. 1s
2 He Helium 7440-59-7 Colourless, odourless gaseous nonmetallic element. Belongs to group 18 of the periodic table. Lowest boiling point of all elements and can only be solidified under pressure. Chemically inert, no known compounds. Discovered in the solar spectrum in 1868 by Lockyer. 1s2
3 Li Lithium 7439-93-2 Socket silvery metal. First member of group 1 of the periodic table. Lithium salts are used in psychomedicine. [He] 2s
4 Be Beryllium 7440-41-7 Grey metallic element of group 2 of the periodic table. Is toxic and can cause severe lung diseases and dermatitis. Shows high covalent character. It was isolated independently by F. Wohler and A.A. Bussy in 1828. [He] 2s2
5 B Boron 7440-42-8 An element of group 13 of the periodic table. There are two allotropes, amorphous boron is a brown power, but metallic boron is black. The metallic form is hard (9.3 on Mohs' scale) and a bad conductor in room temperatures. It is never found free in nature. Boron-10 is used in nuclear reactor control rods and shields. It was discovered in 1808 by Sir Humphry Davy and by J.L. Gay-Lussac and L.J. Thenard. [He] 2s2 2p
6 C Carbon 7440-44-0 Carbon is a member of group 14 of the periodic table. It has three allotropic forms of it, diamonds, graphite and fullerite. Carbon-14 is commonly used in radioactive dating. Carbon occurs in all organic life and is the basis of organic chemistry. Carbon has the interesting chemical property of being able to bond with itself, and a wide variety of other elements. [He] 2s2 2p2
7 N Nitrogen 7727-37-9 Colourless, gaseous element which belongs to group 15 of the periodic table. Constitutes ~78% of the atmosphere and is an essential part of the ecosystem. Nitrogen for industrial purposes is acquired by the fractional distillation of liquid air. Chemically inactive, reactive generally only at high temperatures or in electrical discharges. It was discovered in 1772 by D. Rutherford. [He] 2s2 2p3
8 O Oxygen 7782-44-7 A colourless, odourless gaseous element belonging to group 16 of the periodic table. It is the most abundant element present in the earth's crust. It also makes up 20.8% of the Earth's atmosphere. For industrial purposes, it is separated from liquid air by fractional distillation. It is used in high temperature welding, and in breathing. It commonly comes in the form of Oxygen, but is found as Ozone in the upper atmosphere. It was discovered by Priestley in 1774. [He] 2s2 2p4
9 F Fluorine 7782-41-4 A poisonous pale yellow gaseous element belonging to group 17 of the periodic table (The halogens). It is the most chemically reactive and electronegative element. It is highly dangerous, causing severe chemical burns on contact with flesh. Fluorine was identified by Scheele in 1771 and first isolated by Moissan in 1886. [He] 2s2 2p5
10 Ne Neon 7440-01-9 Colourless gaseous element of group 18 on the periodic table (noble gases). Neon occurs in the atmosphere, and comprises 0.0018% of the volume of the atmosphere. It has a distinct reddish glow when used in discharge tubes and neon based lamps. It forms almost no chemical compounds. Neon was discovered in 1898 by Sir William Ramsey and M.W. Travers. [He] 2s2 2p6
11 Na Sodium 7440-23-5 Soft silvery reactive element belonging to group 1 of the periodic table (alkali metals). It is highly reactive, oxidizing in air and reacting violently with water, forcing it to be kept under oil. It was first isolated by Humphrey Davy in 1807. [Ne] 3s
12 Mg Magnesium 7439-95-4 Silvery metallic element belonging to group 2 of the periodic table (alkaline-earth metals). It is essential for living organisms, and is used in a number of light alloys. Chemically very reactive, it forms a protective oxide coating when exposed to air and burns with an intense white flame. It also reacts with sulphur, nitrogen and the halogens. First isolated by Bussy in 1828. [Ne] 3s2
13 Al Aluminum 7429-90-5 Silvery-white lustrous metallic element of group 3 of the periodic table. Highly reactive but protected by a thin transparent layer of the oxide which quickly forms in air. There are many alloys of aluminum, as well as a good number of industrial uses. Makes up 8.1% of the Earth's crust, by weight. Isolated in 1825 by H.C. Oersted. [Ne] 3s2 3p
14 Si Silicon 7440-21-3 Metalloid element belonging to group 14 of the periodic table. It is the second most abundant element in the Earth's crust, making up 25.7% of it by weight. Chemically less reactive than carbon. First identified by Lavoisier in 1787 and first isolated in 1823 by Berzelius. [Ne] 3s2 3p2
15 P Phosphorus 7723-14-0 Non-metallic element belonging to group 15 of the periodic table. Has a multiple allotropic forms. Essential element for living organisms. It was discovered by Brandt in 1669. [Ne] 3s2 3p3
16 S Sulfur 7704-34-9 Yellow, nonmetallic element belonging to group 16 of the periodic table. It is an essential element in living organisms, needed in the amino acids cysteine and methionine, and hence in many proteins. Absorbed by plants from the soil as sulphate ion. [Ne] 3s2 3p4
17 Cl Chlorine 7782-50-5 Halogen element. Poisonous greenish-yellow gas. Occurs widely in nature as sodium chloride in seawater. Reacts directly with many elements and compounds, strong oxidizing agent. Discovered by Karl Scheele in 1774. Humphrey David confirmed it as an element in 1810. [Ne] 3s2 3p5
18 Ar Argon 7440-37-1 Monatomic noble gas. Makes up 0.93% of the air. Colourless, odorless. Is inert and has no true compounds. Lord Rayleigh and Sir william Ramsey identified argon in 1894. [Ne] 3s2 3p6
19 K Potassium 7440-09-7 Soft silvery metallic element belonging to group 1 of the periodic table (alkali metals). Occurs naturally in seawater and a many minerals. Highly reactive, chemically, it resembles sodium in its behavior and compounds. Discovered by Sir Humphry Davy in 1807. [Ar] 4s
20 Ca Calcium 7440-70-2 Soft grey metallic element belonging to group 2 of the periodic table. Used a reducing agent in the extraction of thorium, zirconium and uranium. Essential element for living organisms. [Ar] 4s2
21 Sc Scandium 7440-20-2 Rare soft silvery metallic element belonging to group 3 of the periodic table. There are ten isotopes, nine of which are radioactive and have short half-lives. Predicted in 1869 by Mendeleev, isolated by Nilson in 1879. [Ar] 3d 4s2
22 Ti Titanium 7440-32-6 White metallic transition element. Occurs in numerous minerals. Used in strong, light corrosion-resistant alloys. Forms a passive oxide coating when exposed to air. First discovered by Gregor in 1789. [Ar] 3d2 4s2
23 V Vanadium 7440-62-2 Soft and ductile, bright white metal. Good resistance to corrosion by alkalis, sulphuric and hydrochloric acid. It oxidizes readily about 933K. There are two naturally occurring isotopes of vanadium, and 5 radioisotopes, V-49 having the longest half-life at 337 days. Vanadium has nuclear applications, the foil is used in cladding titanium to steel, and vanadium-gallium tape is used to produce a superconductive magnet. Originally discovered by Andres Manuel del Rio of Mexico City in 1801. His discovery went unheeded, however, and in 1820, Nils Gabriel Sefstron of Sweden rediscovered it. Metallic vanadium was isolated by Henry Enfield Roscoe in 1867. The name vanadium comes from Vanadis, a goddess of Scandinavian mythology. Silvery-white metallic transition element. Vanadium is essential to Ascidians. Rats and chickens are also known to require it. Metal powder is a fire hazard, and vanadium compounds should be considered highly toxic. May cause lung cancer if inhaled. [Ar] 3d3 4s2
24 Cr Chromium 7440-47-3 Hard silvery transition element. Used in decorative electroplating. Discovered in 1797 by Vauquelin. [Ar] 3d5 4s
25 Mn Manganese 7439-96-5 Grey brittle metallic transition element. Rather electropositive, combines with some non-metals when heated. Discovered in 1774 by Scheele. [Ar] 3d5 4s2
26 Fe Iron 7439-89-6 Silvery malleable and ductile metallic transition element. Has nine isotopes and is the fourth most abundant element in the earth's crust. Required by living organisms as a trace element (used in hemoglobin in humans.) Quite reactive, oxidizes in moist air, displaces hydrogen from dilute acids and combines with nonmetallic elements. [Ar] 3d6 4s2
27 Co Cobalt 7440-48-4 Light grey transition element. Some meteorites contain small amounts of metallic cobalt. Generally alloyed for use. Mammals require small amounts of cobalt salts. Cobalt-60, an artificially produced radioactive isotope of Cobalt is an important radioactive tracer and cancer-treatment agent. Discovered by G. Brandt in 1737. [Ar] 3d7 4s2
28 Ni Nickel 7440-02-0 Malleable ductile silvery metallic transition element. Discovered by A.F. Cronstedt in 1751. [Ar] 3d8 4s2
29 Cu Copper 7440-50-8 Red-brown transition element. Known by the Romans as 'cuprum.' Extracted and used for thousands of years. Malleable, ductile and an excellent conductor of heat and electricity. When in moist conditions, a greenish layer forms on the outside. [Ar] 3d10 4s
30 Zn Zinc 7440-66-6 Blue-white metallic element. Occurs in multiple compounds naturally. Five stable isotopes are six radioactive isotopes have been found. Chemically a reactive metal, combines with oxygen and other non-metals, reacts with dilute acids to release hydrogen. [Ar] 3d10 4s2
31 Ga Gallium 7440-55-3 Soft silvery metallic element, belongs to group 13 of the periodic table. The two stable isotopes are Ga-69 and Ga-71. Eight radioactive isotopes are known, all having short half-lives. Gallium Arsenide is used as a semiconductor. Corrodes most other metals by diffusing into their lattice. First identified by Francois Lecoq de Boisbaudran in 1875. [Ar] 3d10 4s2 4p
32 Ge Germanium 7440-56-4 Lustrous hard metalloid element, belongs to group 14 of the periodic table. Forms a large number of organometallic compounds. Predicted by Mendeleev in 1871, it was actually found in 1886 by Winkler. [Ar] 3d10 4s2 4p2
33 As Arsenic 7440-38-2 Metalloid element of group 15. There are three allotropes, yellow, black, and grey. Reacts with halogens, concentrated oxidizing acids and hot alkalis. Albertus Magnus is believed to have been the first to isolate the element in 1250. [Ar] 3d10 4s2 4p3
34 Se Selenium 7782-49-2 Metalloid element, belongs to group 16 of the periodic table. Multiple allotropic forms exist. Chemically resembles sulphur. Discovered in 1817 by Jons J. Berzelius. [Ar] 3d10 4s2 4p4
35 Br Bromine 7726-95-6 Halogen element. Red volatile liquid at room temperature. Its reactivity is somewhere between chlorine and iodine. Harmful to human tissue in a liquid state, the vapour irritates eyes and throat. Discovered in 1826 by Antoine Balard. [Ar] 3d10 4s2 4p5
36 Kr Krypton 7439-90-9 Colorless gaseous element, belongs to the noble gases. Occurs in the air, 0.0001% by volume. It can be extracted from liquid air by fractional distillation. Generally not isolated, but used with other inert gases in fluorescent lamps. Five natural isotopes, and five radioactive isotopes. Kr-85, the most stable radioactive isotope, has a half-life of 10.76 years and is produced in fission reactors. Practically inert, though known to form compounds with Fluorine. [Ar] 3d10 4s2 4p6
37 Rb Rubidium 7440-17-7 Soft silvery metallic element, belongs to group 1 of the periodic table. Rb-97, the naturally occurring isotope, is radioactive. It is highly reactive, with properties similar to other elements in group 1, like igniting spontaneously in air. Discovered spectroscopically in 1861 by W. Bunsen and G.R. Kirchoff. [Kr] 5s
38 Sr Strontium 7440-24-6 Soft yellowish metallic element, belongs to group 2 of the periodic table. Highly reactive chemically. Sr-90 is present in radioactive fallout and has a half-life of 28 years. Discovered in 1798 by Klaproth and Hope, isolated in 1808 by Humphry Davy. [Kr] 5s2
39 Y Yttrium 7440-65-5 Silvery-grey metallic element of group 3 on the periodic table. Found in uranium ores. The only natural isotope is Y-89, there are 14 other artificial isotopes. Chemically resembles the lanthanoids. Stable in the air below 400 degrees, celsius. Discovered in 1828 by Friedrich Wohler. [Kr] 4d 5s2
40 Zr Zirconium 7440-67-7 Grey-white metallic transition element. Five natural isotopes and six radioactive isotopes are known. Used in nuclear reactors for a Neutron absorber. Discovered in 1789 by Martin Klaproth, isolated in 1824 by Berzelius. [Kr] 4d2 5s2
41 Nb Niobium 7440-03-1 Soft, ductile grey-blue metallic transition element. Used in special steels and in welded joints to increase strength. Combines with halogens and oxidizes in air at 200 degrees celsius. Discovered by Charles Hatchett in 1801 and isolated by Blomstrand in 1864. Called Columbium originally. [Kr] 4d4 5s
42 Mo Molybdenum 7439-98-7 Silvery-white, hard metallic transition element. It is chemically unreactive and is not affected by most acids. It oxidizes at high temperatures. There are seven natural isotopes, and four radioisotopes, Mo-93 being the most stable with a half-life of 3500 years. Molybdenum is used in almost all high-strength steels, it has nuclear applications, and is a catalyst in petroleum refining. Discovered in 1778 by Carl Welhelm Scheele of Sweden. Impure metal was prepared in 1782 by Peter Jacob Hjelm. The name comes from the Greek word molybdos which means lead. Trace amounts of molybdenum are required for all known forms of life. All molybdenum compounds should be considered highly toxic, and will also cause severe birth defects. [Kr] 4d5 5s
43 Tc Technetium 7440-26-8 Radioactive metallic transition element. Can be detected in some stars and the fission products of uranium. First made by Perrier and Segre by bombarding molybdenum with deutrons, giving them Tc-97. Tc-99 is the most stable isotope with a half-life of 2.6*10^6 years. Sixteen isotopes are known. Organic technetium compounds are used in bone imaging. Chemical properties are intermediate between rhenium and manganese. [Kr] 4d5 5s2
44 Ru Ruthenium 7440-18-8 Hard white metallic transition element. Found with platinum, used as a catalyst in some platinum alloys. Dissolves in fused alkalis, and is not attacked by acids. Reacts with halogens and oxygen at high temperatures. Isolated in 1844 by K.K. Klaus. [Kr] 4d7 5s
45 Rh Rhodium 7440-16-6 Silvery white metallic transition element. Found with platinum and used in some platinum alloys. Not attacked by acids, dissolves only in aqua regia. Discovered in 1803 by W.H. Wollaston. [Kr] 4d8 5s
46 Pd Palladium 7440-05-3 Soft white ductile transition element. Found with some copper and nickel ores. Does not react with oxygen at normal temperatures. Dissolves slowly in hydrochloric acid. Discovered in 1803 by W.H. Wollaston. [Kr] 4d10
47 Ag Silver 7440-22-4 White lustrous soft metallic transition element. Found in both its elemental form and in minerals. Used in jewellery, tableware and so on. Less reactive than silver, chemically. [Kr] 4d10 5s
48 Cd Cadmium 7440-43-9 Soft bluish metal belonging to group 12 of the periodic table. Extremely toxic even in low concentrations. Chemically similar to zinc, but lends itself to more complex compounds. Discovered in 1817 by F. Stromeyer. [Kr] 4d10 5s2
49 In Indium 7440-74-6 Soft silvery element belonging to group 13 of the periodic table. The most common natural isotope is In-115, which has a half-life of 6*10^4 years. Five other radioisotopes exist. Discovered in 1863 by Reich and Richter. [Kr] 4d10 5s2 5p
50 Sn Tin 7440-31-5 Silvery malleable metallic element belonging to group 14 of the periodic table. Twenty-six isotopes are known, five of which are radioactive. Chemically reactive. Combines directly with chlorine and oxygen and displaces hydrogen from dilute acids. [Kr] 4d10 5s2 5p2
51 Sb Antimony 7440-36-0 Element of group 15. Multiple allotropic forms. The stable form of antimony is a blue-white metal. Yellow and black antimony are unstable non-metals. Used in flame-proofing, paints, ceramics, enamels, and rubber. Attacked by oxidizing acids and halogens. First reported by Tholden in 1450. [Kr] 4d10 5s2 5p3
52 Te Tellurium 13494-80-9 Silvery metalloid element of group 16. Eight natural isotopes, nine radioactive isotopes. Used in semiconductors and to a degree in some steels. Chemistry is similar to Sulphur. Discovered in 1782 by Franz Miller. [Kr] 4d10 5s2 5p4
53 I Iodine 7553-56-2 Dark violet nonmetallic element, belongs to group 17 of the periodic table. Insoluble in water. Required as a trace element for living organisms. One stable isotope, I-127 exists, in addition to fourteen radioactive isotopes. Chemically the least reactive of the halogens, and the most electropositive metallic halogen. Discovered in 1812 by Courtois. [Kr] 4d10 5s2 5p5
54 Xe Xenon 7440-63-3 Colourless, odourless gas belonging to group 18 on the periodic table (the noble gases.) Nine natural isotopes and seven radioactive isotopes are known. Xenon was part of the first noble-gas compound synthesized. Several others involving Xenon have been found since then. Xenon was discovered by Ramsey and Travers in 1898. [Kr] 4d10 5s2 5p6
55 Cs Cesium 7440-46-2 Soft silvery-white metallic element belonging to group 1 of the periodic table. One of the three metals which are liquid at room temperature. Cs-133 is the natural, and only stable, isotope. Fifteen other radioisotopes exist. Caesium reacts explosively with cold water, and ice at temperatures above 157K. Caesium hydroxide is the strongest base known. Caesium is the most electropositive, most alkaline and has the least ionization potential of all the elements. Known uses include the basis of atomic clocks, catalyst for the hydrogenation of some organic compounds, and in photoelectric cells. Caesium was discovered by Gustav Kirchoff and Robert Bunsen in Germany in 1860 spectroscopically. Its identification was based upon the bright blue lines in its spectrum. The name comes from the latin word caesius, which means sky blue. Caesium should be considered highly toxic. Some of the radioisotopes are even more toxic. [Xe] 6s
56 Ba Barium 7440-39-3 Silvery-white reactive element, belonging to group 2 of the periodic table. Soluble barium compounds are extremely poisonous. Identified in 1774 by Karl Scheele and extracted in 1808 by Humphry Davy. [Xe] 6s2
57 La Lanthanum 7439-91-0 (From the Greek word lanthanein, to line hidden) Silvery metallic element belonging to group 3 of the periodic table and oft considered to be one of the lanthanoids. Found in some rare-earth minerals. Twenty-five natural isotopes exist. La-139 which is stable, and La-138 which has a half-life of 10^10 to 10^15 years. The other twenty-three isotopes are radioactive. It resembles the lanthanoids chemically. Lanthanum has a low to moderate level of toxicity, and should be handled with care. Discovered in 1839 by C.G. Mosander. [Xe] 5d 6s2
58 Ce Cerium 7440-45-1 Silvery metallic element, belongs to the lanthanoids. Four natural isotopes exist, and fifteen radioactive isotopes have been identified. Used in some rare-earth alloys. The oxidized form is used in the glass industry. Discovered by Martin .H. Klaproth in 1803. [Xe] 4f 5d 6s2
59 Pr Praseodymium 7440-10-0 Soft silvery metallic element, belongs to the lanthanoids. Only natural isotope is Pr-141 which is not radioactive. Fourteen radioactive isotopes have been artificially produced. Used in rare-earth alloys. Discovered in 1885 by C.A. von Welsbach. [Xe] 4f3 6s2
60 Nd Neodymium 7440-00-8 Soft bright silvery metallic element, belongs to the lanthanoids. Seven natural isotopes, Nd-144 being the only radioactive one with a half-life of 10^10 to 10^15 years. Six artificial radioisotopes have been produced. The metal is used in glass works to color class a shade of violet-purple and make it dichroic. One of the more reactive rare-earth metals, quickly reacts with air. Used in some rare-earth alloys. Neodymium is used to color the glass used in welder's glasses. Neodymium is also used in very powerful, permanent magnets (Nd2Fe14B). Discovered by Carl F. Auer von Welsbach in Austria in 1885 by separating didymium into its elemental components Praseodymium and neodymium. The name comes from the Greek words 'neos didymos' which means 'new twin'. Neodymium should be considered highly toxic, however evidence would seem to show that it acts as little more than a skin and eye irritant. The dust however, presents a fire and explosion hazard. [Xe] 4f4 6s2
61 Pm Promethium 7440-12-2 Soft silvery metallic element, belongs to the lanthanoids. Pm-147, the only natural isotope, is radioactive and has a half-life of 252 years. Eighteen radioisotopes have been produced, but all have very short half-lives. Found only in nuclear decay waste. Pm-147 is of interest as a beta-decay source, however Pm-146 and Pm-148 have to be removed from it first, as they generate gamma radiation. Discovered by J.A. Marinsky, L.E. Glendenin and C.D. Coryell in 1947. [Xe] 4f5 6s2
62 Sm Samarium 7440-19-9 Soft silvery metallic element, belongs to the lanthanoids. Seven natural isotopes, Sm-147 is the only radioisotope, and has a half-life of 2.5*10^11 years. Used for making special alloys needed in the production of nuclear reactors. Also used as a neutron absorber. Small quantities of samarium oxide is used in special optical glasses. The largest use of the element is its ferromagnetic alloy which produces permanent magnets that are five times stronger than magnets produced by any other material. Discovered by Francois Lecoq de Boisbaudran in 1879. [Xe] 4f6 6s2
63 Eu Europium 7440-53-1 Soft silvery metallic element belonging to the lanthanoids. Eu-151 and Eu-153 are the only two stable isotopes, both of which are Neutron absorbers. Discovered in 1889 by Sir William Crookes. [Xe] 4f7 6s2
64 Gd Gadolinium 7440-54-2 Soft silvery metallic element belonging to the lanthanoids. Seven natural, stable isotopes are known in addition to eleven artificial isotopes. Gd-155 and Gd-157 and the best neutron absorbers of all elements. Gadolinium compounds are used in electronics. Discovered by J.C.G Marignac in 1880. [Xe] 4f7 5d 6s2
65 Tb Terbium 7440-27-9 Silvery metallic element belonging to the lanthanoids. Tb-159 is the only stable isotope, there are seventeen artificial isotopes. Discovered by G.G. Mosander in 1843. [Xe] 4f9 6s2
66 Dy Dysprosium 7429-91-6 Metallic with a bright silvery-white lustre. Dysprosium belongs to the lanthanoids. It is relatively stable in air at room temperatures, it will however dissolve in mineral acids, evolving hydrogen. It is found in from rare-earth minerals. There are seven natural isotopes of dysprosium, and eight radioisotopes, Dy-154 being the most stable with a half-life of 3*10^6 years. Dysprosium is used as a neutron absorber in nuclear fission reactions, and in compact disks. It was discovered by Paul Emile Lecoq de Boisbaudran in 1886 in France. Its name comes from the Greek word dysprositos, which means hard to obtain. [Xe] 4f10 6s2
67 Ho Holmium 7440-60-0 Relatively soft and malleable silvery-white metallic element, which is stable in dry air at room temperature. It oxidizes in moist air and at high temperatures. It belongs to the lanthanoids. A rare-earth metal, it is found in the minerals monazite and gadolinite. It possesses unusual magnetic properties. One natural isotope, Ho-165 exists, six radioisotopes exist, the most stable being Ho-163 with a half-life of 4570 years. Holmium is used in some metal alloys, it is also said to stimulate the metabolism. Discovered by Per Theodor Cleve and J.L. Soret in Switzerland in 1879. The name homium comes from the Greek word Holmia which means Sweden. While all holmium compounds should be considered highly toxic, initial evidence seems to indicate that they do not pose much danger. The metal's dust however, is a fire hazard. [Xe] 4f11 6s2
68 Er Erbium 7440-52-0 Soft silvery metallic element which belongs to the lanthanoids. Six natural isotopes that are stable. Twelve artificial isotopes are known. Used in nuclear technology as a neutron absorber. It is being investigated for other possible uses. Discovered by Carl G. Mosander in 1843. [Xe] 4f12 6s2
69 Tm Thulium 7440-30-4 Soft grey metallic element that belongs to the lanthanoids. One natural isotope exists, Tm-169, and seventeen artificial isotopes have been produced. No known uses for the element. Discovered in 1879 by Per Theodor Cleve. [Xe] 4f13 6s2
70 Yb Ytterbium 7440-64-4 Silvery metallic element of the lanthanoids. Seven natural isotopes and ten artificial isotopes are known. Used in certain steels. Discovered by J.D.G. Marignac in 1878. [Xe] 4f14 6s2
71 Lu Lutetium 7439-94-3 Silvery-white rare-earth metal which is relatively stable in air. It happens to be the most expensive rare-earth metal. Its found with almost all rare-earth metals, but is very difficult to separate from other elements. Least abundant of all natural elements. Used in metal alloys, and as a catalyst in various processes. There are two natural, stable isotopes, and seven radioisotopes, the most stable being Lu-174 with a half-life of 3.3 years. The separation of lutetium from Ytterbium was described by Georges Urbain in 1907. It was discovered at approximately the same time by Carl Auer von Welsbach. The name comes from the Greek word lutetia which means Paris. [Xe] 4f14 5d 6s2
72 Hf Hafnium 7440-58-6 Silvery lustrous metallic transition element. Used in tungsten alloys in filaments and electrodes, also acts as a neutron absorber. First reported by Urbain in 1911, existence was finally established in 1923 by D. Coster, G.C. de Hevesy in 1923. [Xe] 4f14 5d2 6s2
73 Ta Tantalum 7440-25-7 Heavy blue-grey metallic transition element. Ta-181 is a stable isotope, and Ta-180 is a radioactive isotope, with a half-life in excess of 10^7 years. Used in surgery as it is unreactive. Forms a passive oxide layer in air. Identified in 1802 by Ekeberg and isolated in 1820 by Jons J. Berzelius. [Xe] 4f14 5d3 6s2
74 W Tungsten 7440-33-7 White or grey metallic transition element,formerly called Wolfram. Forms a protective oxide in air and can be oxidized at high temperature. First isolated by Jose and Fausto de Elhuyer in 1783. [Xe] 4f14 5d4 6s2
75 Re Rhenium 7440-15-5 Silvery-white metallic transition element. Obtained as a by-product of molybdenum refinement. Rhenium-molybdenum alloys are superconducting. [Xe] 4f14 5d5 6s2
76 Os Osmium 7440-04-2 Hard blue-white metallic transition element. Found with platinum and used in some alloys with platinum and iridium. [Xe] 4f14 5d6 6s2
77 Ir Iridium 7439-88-5 Very hard and brittle, silvery metallic transition element. It has a yellowish cast to it. Salts of iridium are highly colored. It is the most corrosion resistant metal known, not attacked by any acid, but is attacked by molten salts. There are two natural isotopes of iridium, and 4 radioisotopes, the most stable being Ir-192 with a half-life of 73.83 days. Ir-192 decays into Platinum, while the other radioisotopes decay into Osmium. Iridium is used in high temperature apparatus, electrical contacts, and as a hardening agent for platinumpy. Discovered in 1803 by Smithson Tennant in England. The name comes from the Greek word iris, which means rainbow. Iridium metal is generally non-toxic due to its relative unreactivity, but iridium compounds should be considered highly toxic. [Xe] 4f14 5d7 6s2
78 Pt Platinum 7440-06-4 Attractive greyish-white metal. When pure, it is malleable and ductile. Does not oxidize in air, insoluble in hydrochloric and nitric acid. Corroded by halogens, cyandies, sulphur and alkalis. Hydrogen and Oxygen react explosively in the presence of platinumpy. There are six stable isotopes and three radioisotopes, the most stable being Pt-193 with a half-life of 60 years. Platinum is used in jewelry, laboratory equipment, electrical contacts, dentistry, and anti-pollution devices in cars. PtCl2(NH3)2 is used to treat some forms of cancer. Platinum-Cobalt alloys have magnetic properties. It is also used in the definition of the Standard Hydrogen Electrode. Discovered by Antonio de Ulloa in South America in 1735. The name comes from the Spanish word platina which means silver. Platinum metal is generally not a health concern due to its unreactivity, however platinum compounds should be considered highly toxic. [Xe] 4f14 5d9 6s
79 Au Gold 7440-57-5 Gold is gold colored. It is the most malleable and ductile metal known. There is only one stable isotope of gold, and five radioisotopes of gold, Au-195 being the most stable with a half-life of 186 days. Gold is used as a monetary standard, in jewelry, dentistry, electronics. Au-198 is used in treating cancer and some other medical conditions. Gold has been known to exist as far back as 2600 BC. Gold comes from the Anglo-Saxon word gold. Its symbol, Au, comes from the Latin word aurum, which means gold. Gold is not particularly toxic, however it is known to cause damage to the liver and kidneys in some. [Xe] 4f14 5d10 6s
80 Hg Mercury 7439-97-6 Heavy silvery liquid metallic element, belongs to the zinc group. Used in thermometers, barometers and other scientific apparatus. Less reactive than zinc and cadmium, does not displace hydrogen from acids. Forms a number of complexes and organomercury compounds. [Xe] 4f14 5d10 6s2
81 Tl Thallium 7440-28-0 Pure, unreacted thallium appears silvery-white and exhibits a metallic lustre. Upon reacting with air, it begins to turn bluish-grey and looks like lead. It is very malleable, and can be cut with a knife. There are two stable isotopes, and four radioisotopes, Tl-204 being the most stable with a half-life of 3.78 years. Thallium sulphate was used as a rodenticide. Thallium sulphine's conductivity changes with exposure to infrared light, this gives it a use in infrared detectors. Discovered by Sir William Crookes via spectroscopy. Its name comes from the Greek word thallos, which means green twig. Thallium and its compounds are toxic and can cause cancer. [Xe] 4f14 5d10 6s2 6p
82 Pb Lead 7439-92-1 Heavy dull grey ductile metallic element, belongs to group 14. Used in building construction, lead-place accumulators, bullets and shot, and is part of solder, pewter, bearing metals, type metals and fusible alloys. [Xe] 4f14 5d10 6s2 6p2
83 Bi Bismuth 7440-69-9 White crystalline metal with a pink tinge, belongs to group 15. Most diamagnetic of all metals and has the lowest thermal conductivity of all the elements except mercury. Lead-free bismuth compounds are used in cosmetics and medical procedures. Burns in the air and produces a blue flame. In 1753, C.G. Junine first demonstrated that it was different from lead. [Xe] 4f14 5d10 6s2 6p3
84 Po Polonium 7440-08-6 Rare radioactive metallic element, belongs to group 16 of the periodic table. Over 30 known isotopes exist, the most of all elements. Po-209 has a half-life of 103 years. Possible uses in heating spacecraft. Discovered by Marie Curie in 1898 in a sample of pitchblende. [Xe] 4f14 5d10 6s2 6p4
85 At Astatine 7440-68-8 Radioactive halogen element. Occurs naturally from uranium and thorium decay. At least 20 known isotopes. At-210, the most stable, has a half-life of 8.3 hours. Synthesized by nuclear bombardment in 1940 by D.R. Corson, K.R. MacKenzie and E. Segre at the University of California. [Xe] 4f14 5d10 6s2 6p5
86 Rn Radon 10043-92-2 Colorless radioactive gaseous element, belongs to the noble gases. Of the twenty known isotopes, the most stable is Rn-222 with a half-life of 3.8 days. Formed by the radioactive decay of Radium-226. Radon itself decays into Polonium. Used in radiotherapy. As a noble gas, it is effectively inert, though radon fluoride has been synthesized. First isolated in 1908 by Ramsey and Gray. [Xe] 4f14 5d10 6s2 6p6
87 Fr Francium 7440-73-5 Radioactive element, belongs to group 1 of the periodic table. Found in uranium and thorium ores. The 22 known isotopes are all radioactive, with the most stable being Fr-223. Its existence was confirmed in 1939 by Marguerite Perey. [Rn] 7s
88 Ra Radium 7440-14-4 Radioactive metallic transuranic element, belongs to group 2 of the periodic table. Most stable isotope, Ra-226 has a half-life of 1602 years, which decays into radon. Isolated from pitchblende in 1898 Marie and Pierre Curie. [Rn] 7s2
89 Ac Actinium 7440-34-8 Silvery radioactive metallic element, belongs to group 3 of the periodic table. The most stable isotope, Ac-227, has a half-life of 217 years. Ac-228 (half-life of 6.13 hours) also occurs in nature. There are 22 other artificial isotopes, all radioactive and having very short half-lives. Chemistry similar to lanthanumpy. Used as a source of alpha particles. Discovered by A. Debierne in 1899. [Rn] 6d 7s2
90 Th Thorium 7440-29-1 Grey radioactive metallic element. Belongs to actinoids. Found in monazite sand in Brazil, India and the US. Thorium-232 has a half-life of 1.39x10^10 years. Can be used as a nuclear fuel for breeder reactors. Thorium-232 captures slow Neutrons and breeds uranium-233. Discovered by Jons J. Berzelius in 1829. [Rn] 6d2 7s2
91 Pa Protactinium 7440-13-3 Radioactive metallic element, belongs to the actinoids. The most stable isotope, Pa-231 has a half-life of 2.43*10^4 years. At least 10 other radioactive isotopes are known. No practical applications are known. Discovered in 1917 by Lise Meitner and Otto Hahn. [Rn] 5f2 6d 7s2
92 U Uranium 7440-61-1 White radioactive metallic element belonging to the actinoids. Three natural isotopes, U-238, U-235 and U-234. Uranium-235 is used as the fuel for nuclear reactors and weapons. Discovered by Martin H. Klaproth in 1789. [Rn] 5f3 6d 7s2
93 Np Neptunium 7439-99-8 Radioactive metallic transuranic element, belongs to the actinoids. Np-237, the most stable isotope, has a half-life of 2.2*10^6 years and is a by product of nuclear reactors. The other known isotopes have mass numbers 229 through 236, and 238 through 241. Np-236 has a half-life of 5*10^3 years. First produced by Edwin M. McMillan and P.H. Abelson in 1940. [Rn] 5f4 6d 7s2
94 Pu Plutonium 7440-07-5 Dense silvery radioactive metallic transuranic element, belongs to the actinoids. Pu-244 is the most stable isotope with a half-life of 7.6*10^7 years. Thirteen isotopes are known. Pu-239 is the most important, it undergoes nuclear fission with slow neutrons and is hence important to nuclear weapons and reactors. Plutonium production is monitored down to the gram to prevent military misuse. First produced by Gleen T. Seaborg, Edwin M. McMillan, J.W. Kennedy and A.C. Wahl in 1940. [Rn] 5f6 7s2
95 Am Americium 7440-35-9 Radioactive metallic transuranic element, belongs to the actinoids. Ten known isotopes. Am-243 is the most stable isotope, with a half-life of 7.95*10^3 years. Discovered by Glenn T. Seaborg and associates in 1945, it was obtained by bombarding Uranium-238 with alpha particles. [Rn] 5f7 7s2
96 Cm Curium 7440-51-9 Radioactive metallic transuranic element. Belongs to actinoid series. Nine known isotopes, Cm-247 has a half-life of 1.64*10^7 years. First identified by Glenn T. Seaborg and associates in 1944, first produced by L.B. Werner and I. Perlman in 1947 by bombarding americium-241 with Neutrons. Named for Marie Curie. [Rn] 5f7 6d 7s2
97 Bk Berkelium 7440-40-6 Radioactive metallic transuranic element. Belongs to actinoid series. Eight known isotopes, the most common Bk-247, has a half-life of 1.4*10^3 years. First produced by Glenn T. Seaborg and associates in 1949 by bombarding americium-241 with alpha particles. [Rn] 5f9 7s2
98 Cf Californium 7440-71-3 Radioactive metallic transuranic element. Belongs to actinoid series. Cf-251 has a half life of about 700 years. Nine isotopes are known. Cf-252 is an intense Neutron source, which makes it an intense Neutron source and gives it a use in Neutron activation analysis and a possible use as a radiation source in medicine. First produced by Glenn T. Seaborg and associates in 1950. [Rn] 5f10 7s2
99 Es Einsteinium 7429-92-7 Appearance is unknown, however it is most probably metallic and silver or gray in color. Radioactive metallic transuranic element belonging to the actinoids. Es-254 has the longest half-life of the eleven known isotopes at 270 days. First identified by Albert Ghiorso and associates in the debris of the 1952 hydrogen bomb explosion. In 1961 the first microgram quantities of Es-232 were separated. While einsteinium never exists naturally, if a sufficient amount was assembled, it would pose a radiation hazard. [Rn] 5f11 7s2
100 Fm Fermium 7440-72-4 Radioactive metallic transuranic element, belongs to the actinoids. Ten known isotopes, most stable is Fm-257 with a half-life of 10 days. First identified by Albert Ghiorso and associates in the debris of the first hydrogen-bomb explosion in 1952. [Rn] 5f12 7s2
101 Md Mendelevium 7440-11-1 Radioactive metallic transuranic element. Belongs to the actinoid series. Only known isotope, Md-256 has a half-life of 1.3 hours. First identified by Glenn T. Seaborg, Albert Ghiorso and associates in 1955. Alternative name Unnilunium has been proposed. Named after the 'inventor' of the periodic table, Dmitri Mendeleev. [Rn] 5f13 7s2
102 No Nobelium 10028-14-5 Radioactive metallic transuranic element, belongs to the actinoids. Seven known isotopes exist, the most stable being No-254 with a half-life of 255 seconds. First identified with certainty by Albert Ghiorso and Glenn T. Seaborg in 1966. Unnilbium has been proposed as an alternative name. [Rn] 5f14 7s2
103 Lr Lawrencium 22537-19-5 Appearance unknown, however it is most likely silvery-white or grey and metallic. Lawrencium is a synthetic rare-earth metal. There are eight known radioisotopes, the most stable being Lr-262 with a half-life of 3.6 hours. Due to the short half-life of lawrencium, and its radioactivity, there are no known uses for it. Identified by Albert Ghiorso in 1961 at Berkeley. It was produced by bombarding californium with boron ions. The name is temporary IUPAC nomenclature, the origin of the name comes from Ernest O. Lawrence, the inventor of the cyclotron. If sufficient amounts of lawrencium were produced, it would pose a radiation hazard. [Rn] 5f14 6d 7s2
104 Rf Rutherfordium 53850-36-5 Radioactive transactinide element. Expected to have similar chemical properties to those displayed by hafnium. Rf-260 was discovered by the Joint Nuclear Research Institute at Dubna (U.S.S.R.) in 1964. Researchers at Berkeley discovered Unq-257 and Unq-258 in 1964. [Rn] 5f14 6d2 7s2
105 Db Dubnium 53850-35-4 Also known as Hahnium, Ha. Radioactive transactinide element. Half-life of 1.6s. Discovered in 1970 by Berkeley researchers. So far, seven isotopes have been discovered. [Rn] 5f14 6d3 7s2
106 Sg Seaborgium 54038-81-2 Half-life of 0.9 +/- 0.2 s. Discovered by the Joint Institute for Nuclear Research at Dubna (U.S.S.R.) in June of 1974. Its existence was confirmed by the Lawrence Berkeley Laboratory and Livermore National Laboratory in September of 1974. [Rn] 5f14 6d4 7s2
107 Bh Bohrium 54037-14-8 Radioactive transition metal. Half-life of approximately 1/500 s. Discovered by the Joint Institute for Nuclear Research at Dubna (U.S.S.R.) in 1976. Confirmed by West German physicists at the Heavy Ion Research Laboratory at Darmstadt. [Rn] 5f14 6d5 7s2
108 Hs Hassium 54037-57-9 Radioactive transition metal first synthesized in 1984 by a German research team led by Peter Armbruster and Gottfried Muenzenberg at the Institute for Heavy Ion Research at Darmstadt. [Rn] 5f14 6d6 7s2
109 Mt Meitnerium 54038-01-6 Half-life of approximately 5 ms. The creation of this element demonstrated that fusion techniques could indeed be used to make new, heavy nuclei. Made and identified by physicists of the Heavy Ion Research Laboratory, Darmstadt, West Germany in 1982. Named in honor of Lise Meitner, the Austrian physicist. [Rn] 5f14 6d7 7s2
110 Ds Darmstadtium 54083-77-1 None [Rn] 5f14 6d9 7s1
111 Rg Roentgenium 54386-24-2 None [Rn] 5f14 6d10 7s1
112 Cn Copernicium 54084-26-3 None [Rn] 5f14 6d10 7s2
113 Nh Nihonium 54084-70-7 None [Rn] 5f14 6d10 7s2 7p1
114 Fl Flerovium 54085-16-4 None [Rn] 5f14 6d10 7s2 7p2
115 Mc Moscovium 54085-64-2 None [Rn] 5f14 6d10 7s2 7p3
116 Lv Livermorium 54100-71-9 None [Rn] 5f14 6d10 7s2 7p4
117 Ts Tennessine 87658-56-8 None [Rn] 5f14 6d10 7s2 7p5
118 Og Oganesson 54144-19-3 None [Rn] 5f14 6d10 7s2 7p6

Solution:

Optional Input Parameters


columns
A list of one or more values from
['symbol', 'name', 'cas', 'description', 'sources', 'uses', 'discoverers', 'discovery_year', 'discovery_location', 'name_origin', 'electronic_configuration']

blocks
a list of one or more values from ['s', 'p', 'd', 'f']

group_ids
a list of one or more values from 1 to 17

series_ids
a list of one or more values from 1 to 10

start_atomic_number
Value from 1 to 118

end_atomic_number
Value from 1 to 118

symbol name cas description electronic_configuration
atomic_number
1 H Hydrogen 1333-74-0 Colourless, odourless gaseous chemical element. Lightest and most abundant element in the universe. Present in water and in all organic compounds. Chemically reacts with most elements. Discovered by Henry Cavendish in 1776. 1s
2 He Helium 7440-59-7 Colourless, odourless gaseous nonmetallic element. Belongs to group 18 of the periodic table. Lowest boiling point of all elements and can only be solidified under pressure. Chemically inert, no known compounds. Discovered in the solar spectrum in 1868 by Lockyer. 1s2
3 Li Lithium 7439-93-2 Socket silvery metal. First member of group 1 of the periodic table. Lithium salts are used in psychomedicine. [He] 2s
4 Be Beryllium 7440-41-7 Grey metallic element of group 2 of the periodic table. Is toxic and can cause severe lung diseases and dermatitis. Shows high covalent character. It was isolated independently by F. Wohler and A.A. Bussy in 1828. [He] 2s2
5 B Boron 7440-42-8 An element of group 13 of the periodic table. There are two allotropes, amorphous boron is a brown power, but metallic boron is black. The metallic form is hard (9.3 on Mohs' scale) and a bad conductor in room temperatures. It is never found free in nature. Boron-10 is used in nuclear reactor control rods and shields. It was discovered in 1808 by Sir Humphry Davy and by J.L. Gay-Lussac and L.J. Thenard. [He] 2s2 2p
6 C Carbon 7440-44-0 Carbon is a member of group 14 of the periodic table. It has three allotropic forms of it, diamonds, graphite and fullerite. Carbon-14 is commonly used in radioactive dating. Carbon occurs in all organic life and is the basis of organic chemistry. Carbon has the interesting chemical property of being able to bond with itself, and a wide variety of other elements. [He] 2s2 2p2
7 N Nitrogen 7727-37-9 Colourless, gaseous element which belongs to group 15 of the periodic table. Constitutes ~78% of the atmosphere and is an essential part of the ecosystem. Nitrogen for industrial purposes is acquired by the fractional distillation of liquid air. Chemically inactive, reactive generally only at high temperatures or in electrical discharges. It was discovered in 1772 by D. Rutherford. [He] 2s2 2p3
8 O Oxygen 7782-44-7 A colourless, odourless gaseous element belonging to group 16 of the periodic table. It is the most abundant element present in the earth's crust. It also makes up 20.8% of the Earth's atmosphere. For industrial purposes, it is separated from liquid air by fractional distillation. It is used in high temperature welding, and in breathing. It commonly comes in the form of Oxygen, but is found as Ozone in the upper atmosphere. It was discovered by Priestley in 1774. [He] 2s2 2p4
9 F Fluorine 7782-41-4 A poisonous pale yellow gaseous element belonging to group 17 of the periodic table (The halogens). It is the most chemically reactive and electronegative element. It is highly dangerous, causing severe chemical burns on contact with flesh. Fluorine was identified by Scheele in 1771 and first isolated by Moissan in 1886. [He] 2s2 2p5
10 Ne Neon 7440-01-9 Colourless gaseous element of group 18 on the periodic table (noble gases). Neon occurs in the atmosphere, and comprises 0.0018% of the volume of the atmosphere. It has a distinct reddish glow when used in discharge tubes and neon based lamps. It forms almost no chemical compounds. Neon was discovered in 1898 by Sir William Ramsey and M.W. Travers. [He] 2s2 2p6
11 Na Sodium 7440-23-5 Soft silvery reactive element belonging to group 1 of the periodic table (alkali metals). It is highly reactive, oxidizing in air and reacting violently with water, forcing it to be kept under oil. It was first isolated by Humphrey Davy in 1807. [Ne] 3s
12 Mg Magnesium 7439-95-4 Silvery metallic element belonging to group 2 of the periodic table (alkaline-earth metals). It is essential for living organisms, and is used in a number of light alloys. Chemically very reactive, it forms a protective oxide coating when exposed to air and burns with an intense white flame. It also reacts with sulphur, nitrogen and the halogens. First isolated by Bussy in 1828. [Ne] 3s2
13 Al Aluminum 7429-90-5 Silvery-white lustrous metallic element of group 3 of the periodic table. Highly reactive but protected by a thin transparent layer of the oxide which quickly forms in air. There are many alloys of aluminum, as well as a good number of industrial uses. Makes up 8.1% of the Earth's crust, by weight. Isolated in 1825 by H.C. Oersted. [Ne] 3s2 3p
14 Si Silicon 7440-21-3 Metalloid element belonging to group 14 of the periodic table. It is the second most abundant element in the Earth's crust, making up 25.7% of it by weight. Chemically less reactive than carbon. First identified by Lavoisier in 1787 and first isolated in 1823 by Berzelius. [Ne] 3s2 3p2
15 P Phosphorus 7723-14-0 Non-metallic element belonging to group 15 of the periodic table. Has a multiple allotropic forms. Essential element for living organisms. It was discovered by Brandt in 1669. [Ne] 3s2 3p3
16 S Sulfur 7704-34-9 Yellow, nonmetallic element belonging to group 16 of the periodic table. It is an essential element in living organisms, needed in the amino acids cysteine and methionine, and hence in many proteins. Absorbed by plants from the soil as sulphate ion. [Ne] 3s2 3p4
17 Cl Chlorine 7782-50-5 Halogen element. Poisonous greenish-yellow gas. Occurs widely in nature as sodium chloride in seawater. Reacts directly with many elements and compounds, strong oxidizing agent. Discovered by Karl Scheele in 1774. Humphrey David confirmed it as an element in 1810. [Ne] 3s2 3p5
18 Ar Argon 7440-37-1 Monatomic noble gas. Makes up 0.93% of the air. Colourless, odorless. Is inert and has no true compounds. Lord Rayleigh and Sir william Ramsey identified argon in 1894. [Ne] 3s2 3p6
19 K Potassium 7440-09-7 Soft silvery metallic element belonging to group 1 of the periodic table (alkali metals). Occurs naturally in seawater and a many minerals. Highly reactive, chemically, it resembles sodium in its behavior and compounds. Discovered by Sir Humphry Davy in 1807. [Ar] 4s
20 Ca Calcium 7440-70-2 Soft grey metallic element belonging to group 2 of the periodic table. Used a reducing agent in the extraction of thorium, zirconium and uranium. Essential element for living organisms. [Ar] 4s2
21 Sc Scandium 7440-20-2 Rare soft silvery metallic element belonging to group 3 of the periodic table. There are ten isotopes, nine of which are radioactive and have short half-lives. Predicted in 1869 by Mendeleev, isolated by Nilson in 1879. [Ar] 3d 4s2
22 Ti Titanium 7440-32-6 White metallic transition element. Occurs in numerous minerals. Used in strong, light corrosion-resistant alloys. Forms a passive oxide coating when exposed to air. First discovered by Gregor in 1789. [Ar] 3d2 4s2
23 V Vanadium 7440-62-2 Soft and ductile, bright white metal. Good resistance to corrosion by alkalis, sulphuric and hydrochloric acid. It oxidizes readily about 933K. There are two naturally occurring isotopes of vanadium, and 5 radioisotopes, V-49 having the longest half-life at 337 days. Vanadium has nuclear applications, the foil is used in cladding titanium to steel, and vanadium-gallium tape is used to produce a superconductive magnet. Originally discovered by Andres Manuel del Rio of Mexico City in 1801. His discovery went unheeded, however, and in 1820, Nils Gabriel Sefstron of Sweden rediscovered it. Metallic vanadium was isolated by Henry Enfield Roscoe in 1867. The name vanadium comes from Vanadis, a goddess of Scandinavian mythology. Silvery-white metallic transition element. Vanadium is essential to Ascidians. Rats and chickens are also known to require it. Metal powder is a fire hazard, and vanadium compounds should be considered highly toxic. May cause lung cancer if inhaled. [Ar] 3d3 4s2
24 Cr Chromium 7440-47-3 Hard silvery transition element. Used in decorative electroplating. Discovered in 1797 by Vauquelin. [Ar] 3d5 4s
25 Mn Manganese 7439-96-5 Grey brittle metallic transition element. Rather electropositive, combines with some non-metals when heated. Discovered in 1774 by Scheele. [Ar] 3d5 4s2
26 Fe Iron 7439-89-6 Silvery malleable and ductile metallic transition element. Has nine isotopes and is the fourth most abundant element in the earth's crust. Required by living organisms as a trace element (used in hemoglobin in humans.) Quite reactive, oxidizes in moist air, displaces hydrogen from dilute acids and combines with nonmetallic elements. [Ar] 3d6 4s2
27 Co Cobalt 7440-48-4 Light grey transition element. Some meteorites contain small amounts of metallic cobalt. Generally alloyed for use. Mammals require small amounts of cobalt salts. Cobalt-60, an artificially produced radioactive isotope of Cobalt is an important radioactive tracer and cancer-treatment agent. Discovered by G. Brandt in 1737. [Ar] 3d7 4s2
28 Ni Nickel 7440-02-0 Malleable ductile silvery metallic transition element. Discovered by A.F. Cronstedt in 1751. [Ar] 3d8 4s2
29 Cu Copper 7440-50-8 Red-brown transition element. Known by the Romans as 'cuprum.' Extracted and used for thousands of years. Malleable, ductile and an excellent conductor of heat and electricity. When in moist conditions, a greenish layer forms on the outside. [Ar] 3d10 4s
30 Zn Zinc 7440-66-6 Blue-white metallic element. Occurs in multiple compounds naturally. Five stable isotopes are six radioactive isotopes have been found. Chemically a reactive metal, combines with oxygen and other non-metals, reacts with dilute acids to release hydrogen. [Ar] 3d10 4s2
31 Ga Gallium 7440-55-3 Soft silvery metallic element, belongs to group 13 of the periodic table. The two stable isotopes are Ga-69 and Ga-71. Eight radioactive isotopes are known, all having short half-lives. Gallium Arsenide is used as a semiconductor. Corrodes most other metals by diffusing into their lattice. First identified by Francois Lecoq de Boisbaudran in 1875. [Ar] 3d10 4s2 4p
32 Ge Germanium 7440-56-4 Lustrous hard metalloid element, belongs to group 14 of the periodic table. Forms a large number of organometallic compounds. Predicted by Mendeleev in 1871, it was actually found in 1886 by Winkler. [Ar] 3d10 4s2 4p2
33 As Arsenic 7440-38-2 Metalloid element of group 15. There are three allotropes, yellow, black, and grey. Reacts with halogens, concentrated oxidizing acids and hot alkalis. Albertus Magnus is believed to have been the first to isolate the element in 1250. [Ar] 3d10 4s2 4p3
34 Se Selenium 7782-49-2 Metalloid element, belongs to group 16 of the periodic table. Multiple allotropic forms exist. Chemically resembles sulphur. Discovered in 1817 by Jons J. Berzelius. [Ar] 3d10 4s2 4p4
35 Br Bromine 7726-95-6 Halogen element. Red volatile liquid at room temperature. Its reactivity is somewhere between chlorine and iodine. Harmful to human tissue in a liquid state, the vapour irritates eyes and throat. Discovered in 1826 by Antoine Balard. [Ar] 3d10 4s2 4p5
36 Kr Krypton 7439-90-9 Colorless gaseous element, belongs to the noble gases. Occurs in the air, 0.0001% by volume. It can be extracted from liquid air by fractional distillation. Generally not isolated, but used with other inert gases in fluorescent lamps. Five natural isotopes, and five radioactive isotopes. Kr-85, the most stable radioactive isotope, has a half-life of 10.76 years and is produced in fission reactors. Practically inert, though known to form compounds with Fluorine. [Ar] 3d10 4s2 4p6
37 Rb Rubidium 7440-17-7 Soft silvery metallic element, belongs to group 1 of the periodic table. Rb-97, the naturally occurring isotope, is radioactive. It is highly reactive, with properties similar to other elements in group 1, like igniting spontaneously in air. Discovered spectroscopically in 1861 by W. Bunsen and G.R. Kirchoff. [Kr] 5s
38 Sr Strontium 7440-24-6 Soft yellowish metallic element, belongs to group 2 of the periodic table. Highly reactive chemically. Sr-90 is present in radioactive fallout and has a half-life of 28 years. Discovered in 1798 by Klaproth and Hope, isolated in 1808 by Humphry Davy. [Kr] 5s2
39 Y Yttrium 7440-65-5 Silvery-grey metallic element of group 3 on the periodic table. Found in uranium ores. The only natural isotope is Y-89, there are 14 other artificial isotopes. Chemically resembles the lanthanoids. Stable in the air below 400 degrees, celsius. Discovered in 1828 by Friedrich Wohler. [Kr] 4d 5s2
40 Zr Zirconium 7440-67-7 Grey-white metallic transition element. Five natural isotopes and six radioactive isotopes are known. Used in nuclear reactors for a Neutron absorber. Discovered in 1789 by Martin Klaproth, isolated in 1824 by Berzelius. [Kr] 4d2 5s2
41 Nb Niobium 7440-03-1 Soft, ductile grey-blue metallic transition element. Used in special steels and in welded joints to increase strength. Combines with halogens and oxidizes in air at 200 degrees celsius. Discovered by Charles Hatchett in 1801 and isolated by Blomstrand in 1864. Called Columbium originally. [Kr] 4d4 5s
42 Mo Molybdenum 7439-98-7 Silvery-white, hard metallic transition element. It is chemically unreactive and is not affected by most acids. It oxidizes at high temperatures. There are seven natural isotopes, and four radioisotopes, Mo-93 being the most stable with a half-life of 3500 years. Molybdenum is used in almost all high-strength steels, it has nuclear applications, and is a catalyst in petroleum refining. Discovered in 1778 by Carl Welhelm Scheele of Sweden. Impure metal was prepared in 1782 by Peter Jacob Hjelm. The name comes from the Greek word molybdos which means lead. Trace amounts of molybdenum are required for all known forms of life. All molybdenum compounds should be considered highly toxic, and will also cause severe birth defects. [Kr] 4d5 5s
43 Tc Technetium 7440-26-8 Radioactive metallic transition element. Can be detected in some stars and the fission products of uranium. First made by Perrier and Segre by bombarding molybdenum with deutrons, giving them Tc-97. Tc-99 is the most stable isotope with a half-life of 2.6*10^6 years. Sixteen isotopes are known. Organic technetium compounds are used in bone imaging. Chemical properties are intermediate between rhenium and manganese. [Kr] 4d5 5s2
44 Ru Ruthenium 7440-18-8 Hard white metallic transition element. Found with platinum, used as a catalyst in some platinum alloys. Dissolves in fused alkalis, and is not attacked by acids. Reacts with halogens and oxygen at high temperatures. Isolated in 1844 by K.K. Klaus. [Kr] 4d7 5s
45 Rh Rhodium 7440-16-6 Silvery white metallic transition element. Found with platinum and used in some platinum alloys. Not attacked by acids, dissolves only in aqua regia. Discovered in 1803 by W.H. Wollaston. [Kr] 4d8 5s
46 Pd Palladium 7440-05-3 Soft white ductile transition element. Found with some copper and nickel ores. Does not react with oxygen at normal temperatures. Dissolves slowly in hydrochloric acid. Discovered in 1803 by W.H. Wollaston. [Kr] 4d10
47 Ag Silver 7440-22-4 White lustrous soft metallic transition element. Found in both its elemental form and in minerals. Used in jewellery, tableware and so on. Less reactive than silver, chemically. [Kr] 4d10 5s
48 Cd Cadmium 7440-43-9 Soft bluish metal belonging to group 12 of the periodic table. Extremely toxic even in low concentrations. Chemically similar to zinc, but lends itself to more complex compounds. Discovered in 1817 by F. Stromeyer. [Kr] 4d10 5s2
49 In Indium 7440-74-6 Soft silvery element belonging to group 13 of the periodic table. The most common natural isotope is In-115, which has a half-life of 6*10^4 years. Five other radioisotopes exist. Discovered in 1863 by Reich and Richter. [Kr] 4d10 5s2 5p
50 Sn Tin 7440-31-5 Silvery malleable metallic element belonging to group 14 of the periodic table. Twenty-six isotopes are known, five of which are radioactive. Chemically reactive. Combines directly with chlorine and oxygen and displaces hydrogen from dilute acids. [Kr] 4d10 5s2 5p2
51 Sb Antimony 7440-36-0 Element of group 15. Multiple allotropic forms. The stable form of antimony is a blue-white metal. Yellow and black antimony are unstable non-metals. Used in flame-proofing, paints, ceramics, enamels, and rubber. Attacked by oxidizing acids and halogens. First reported by Tholden in 1450. [Kr] 4d10 5s2 5p3
52 Te Tellurium 13494-80-9 Silvery metalloid element of group 16. Eight natural isotopes, nine radioactive isotopes. Used in semiconductors and to a degree in some steels. Chemistry is similar to Sulphur. Discovered in 1782 by Franz Miller. [Kr] 4d10 5s2 5p4
53 I Iodine 7553-56-2 Dark violet nonmetallic element, belongs to group 17 of the periodic table. Insoluble in water. Required as a trace element for living organisms. One stable isotope, I-127 exists, in addition to fourteen radioactive isotopes. Chemically the least reactive of the halogens, and the most electropositive metallic halogen. Discovered in 1812 by Courtois. [Kr] 4d10 5s2 5p5
54 Xe Xenon 7440-63-3 Colourless, odourless gas belonging to group 18 on the periodic table (the noble gases.) Nine natural isotopes and seven radioactive isotopes are known. Xenon was part of the first noble-gas compound synthesized. Several others involving Xenon have been found since then. Xenon was discovered by Ramsey and Travers in 1898. [Kr] 4d10 5s2 5p6
55 Cs Cesium 7440-46-2 Soft silvery-white metallic element belonging to group 1 of the periodic table. One of the three metals which are liquid at room temperature. Cs-133 is the natural, and only stable, isotope. Fifteen other radioisotopes exist. Caesium reacts explosively with cold water, and ice at temperatures above 157K. Caesium hydroxide is the strongest base known. Caesium is the most electropositive, most alkaline and has the least ionization potential of all the elements. Known uses include the basis of atomic clocks, catalyst for the hydrogenation of some organic compounds, and in photoelectric cells. Caesium was discovered by Gustav Kirchoff and Robert Bunsen in Germany in 1860 spectroscopically. Its identification was based upon the bright blue lines in its spectrum. The name comes from the latin word caesius, which means sky blue. Caesium should be considered highly toxic. Some of the radioisotopes are even more toxic. [Xe] 6s
56 Ba Barium 7440-39-3 Silvery-white reactive element, belonging to group 2 of the periodic table. Soluble barium compounds are extremely poisonous. Identified in 1774 by Karl Scheele and extracted in 1808 by Humphry Davy. [Xe] 6s2
57 La Lanthanum 7439-91-0 (From the Greek word lanthanein, to line hidden) Silvery metallic element belonging to group 3 of the periodic table and oft considered to be one of the lanthanoids. Found in some rare-earth minerals. Twenty-five natural isotopes exist. La-139 which is stable, and La-138 which has a half-life of 10^10 to 10^15 years. The other twenty-three isotopes are radioactive. It resembles the lanthanoids chemically. Lanthanum has a low to moderate level of toxicity, and should be handled with care. Discovered in 1839 by C.G. Mosander. [Xe] 5d 6s2
58 Ce Cerium 7440-45-1 Silvery metallic element, belongs to the lanthanoids. Four natural isotopes exist, and fifteen radioactive isotopes have been identified. Used in some rare-earth alloys. The oxidized form is used in the glass industry. Discovered by Martin .H. Klaproth in 1803. [Xe] 4f 5d 6s2
59 Pr Praseodymium 7440-10-0 Soft silvery metallic element, belongs to the lanthanoids. Only natural isotope is Pr-141 which is not radioactive. Fourteen radioactive isotopes have been artificially produced. Used in rare-earth alloys. Discovered in 1885 by C.A. von Welsbach. [Xe] 4f3 6s2
60 Nd Neodymium 7440-00-8 Soft bright silvery metallic element, belongs to the lanthanoids. Seven natural isotopes, Nd-144 being the only radioactive one with a half-life of 10^10 to 10^15 years. Six artificial radioisotopes have been produced. The metal is used in glass works to color class a shade of violet-purple and make it dichroic. One of the more reactive rare-earth metals, quickly reacts with air. Used in some rare-earth alloys. Neodymium is used to color the glass used in welder's glasses. Neodymium is also used in very powerful, permanent magnets (Nd2Fe14B). Discovered by Carl F. Auer von Welsbach in Austria in 1885 by separating didymium into its elemental components Praseodymium and neodymium. The name comes from the Greek words 'neos didymos' which means 'new twin'. Neodymium should be considered highly toxic, however evidence would seem to show that it acts as little more than a skin and eye irritant. The dust however, presents a fire and explosion hazard. [Xe] 4f4 6s2
61 Pm Promethium 7440-12-2 Soft silvery metallic element, belongs to the lanthanoids. Pm-147, the only natural isotope, is radioactive and has a half-life of 252 years. Eighteen radioisotopes have been produced, but all have very short half-lives. Found only in nuclear decay waste. Pm-147 is of interest as a beta-decay source, however Pm-146 and Pm-148 have to be removed from it first, as they generate gamma radiation. Discovered by J.A. Marinsky, L.E. Glendenin and C.D. Coryell in 1947. [Xe] 4f5 6s2
62 Sm Samarium 7440-19-9 Soft silvery metallic element, belongs to the lanthanoids. Seven natural isotopes, Sm-147 is the only radioisotope, and has a half-life of 2.5*10^11 years. Used for making special alloys needed in the production of nuclear reactors. Also used as a neutron absorber. Small quantities of samarium oxide is used in special optical glasses. The largest use of the element is its ferromagnetic alloy which produces permanent magnets that are five times stronger than magnets produced by any other material. Discovered by Francois Lecoq de Boisbaudran in 1879. [Xe] 4f6 6s2
63 Eu Europium 7440-53-1 Soft silvery metallic element belonging to the lanthanoids. Eu-151 and Eu-153 are the only two stable isotopes, both of which are Neutron absorbers. Discovered in 1889 by Sir William Crookes. [Xe] 4f7 6s2
64 Gd Gadolinium 7440-54-2 Soft silvery metallic element belonging to the lanthanoids. Seven natural, stable isotopes are known in addition to eleven artificial isotopes. Gd-155 and Gd-157 and the best neutron absorbers of all elements. Gadolinium compounds are used in electronics. Discovered by J.C.G Marignac in 1880. [Xe] 4f7 5d 6s2
65 Tb Terbium 7440-27-9 Silvery metallic element belonging to the lanthanoids. Tb-159 is the only stable isotope, there are seventeen artificial isotopes. Discovered by G.G. Mosander in 1843. [Xe] 4f9 6s2
66 Dy Dysprosium 7429-91-6 Metallic with a bright silvery-white lustre. Dysprosium belongs to the lanthanoids. It is relatively stable in air at room temperatures, it will however dissolve in mineral acids, evolving hydrogen. It is found in from rare-earth minerals. There are seven natural isotopes of dysprosium, and eight radioisotopes, Dy-154 being the most stable with a half-life of 3*10^6 years. Dysprosium is used as a neutron absorber in nuclear fission reactions, and in compact disks. It was discovered by Paul Emile Lecoq de Boisbaudran in 1886 in France. Its name comes from the Greek word dysprositos, which means hard to obtain. [Xe] 4f10 6s2
67 Ho Holmium 7440-60-0 Relatively soft and malleable silvery-white metallic element, which is stable in dry air at room temperature. It oxidizes in moist air and at high temperatures. It belongs to the lanthanoids. A rare-earth metal, it is found in the minerals monazite and gadolinite. It possesses unusual magnetic properties. One natural isotope, Ho-165 exists, six radioisotopes exist, the most stable being Ho-163 with a half-life of 4570 years. Holmium is used in some metal alloys, it is also said to stimulate the metabolism. Discovered by Per Theodor Cleve and J.L. Soret in Switzerland in 1879. The name homium comes from the Greek word Holmia which means Sweden. While all holmium compounds should be considered highly toxic, initial evidence seems to indicate that they do not pose much danger. The metal's dust however, is a fire hazard. [Xe] 4f11 6s2
68 Er Erbium 7440-52-0 Soft silvery metallic element which belongs to the lanthanoids. Six natural isotopes that are stable. Twelve artificial isotopes are known. Used in nuclear technology as a neutron absorber. It is being investigated for other possible uses. Discovered by Carl G. Mosander in 1843. [Xe] 4f12 6s2
69 Tm Thulium 7440-30-4 Soft grey metallic element that belongs to the lanthanoids. One natural isotope exists, Tm-169, and seventeen artificial isotopes have been produced. No known uses for the element. Discovered in 1879 by Per Theodor Cleve. [Xe] 4f13 6s2
70 Yb Ytterbium 7440-64-4 Silvery metallic element of the lanthanoids. Seven natural isotopes and ten artificial isotopes are known. Used in certain steels. Discovered by J.D.G. Marignac in 1878. [Xe] 4f14 6s2
71 Lu Lutetium 7439-94-3 Silvery-white rare-earth metal which is relatively stable in air. It happens to be the most expensive rare-earth metal. Its found with almost all rare-earth metals, but is very difficult to separate from other elements. Least abundant of all natural elements. Used in metal alloys, and as a catalyst in various processes. There are two natural, stable isotopes, and seven radioisotopes, the most stable being Lu-174 with a half-life of 3.3 years. The separation of lutetium from Ytterbium was described by Georges Urbain in 1907. It was discovered at approximately the same time by Carl Auer von Welsbach. The name comes from the Greek word lutetia which means Paris. [Xe] 4f14 5d 6s2
72 Hf Hafnium 7440-58-6 Silvery lustrous metallic transition element. Used in tungsten alloys in filaments and electrodes, also acts as a neutron absorber. First reported by Urbain in 1911, existence was finally established in 1923 by D. Coster, G.C. de Hevesy in 1923. [Xe] 4f14 5d2 6s2
73 Ta Tantalum 7440-25-7 Heavy blue-grey metallic transition element. Ta-181 is a stable isotope, and Ta-180 is a radioactive isotope, with a half-life in excess of 10^7 years. Used in surgery as it is unreactive. Forms a passive oxide layer in air. Identified in 1802 by Ekeberg and isolated in 1820 by Jons J. Berzelius. [Xe] 4f14 5d3 6s2
74 W Tungsten 7440-33-7 White or grey metallic transition element,formerly called Wolfram. Forms a protective oxide in air and can be oxidized at high temperature. First isolated by Jose and Fausto de Elhuyer in 1783. [Xe] 4f14 5d4 6s2
75 Re Rhenium 7440-15-5 Silvery-white metallic transition element. Obtained as a by-product of molybdenum refinement. Rhenium-molybdenum alloys are superconducting. [Xe] 4f14 5d5 6s2
76 Os Osmium 7440-04-2 Hard blue-white metallic transition element. Found with platinum and used in some alloys with platinum and iridium. [Xe] 4f14 5d6 6s2
77 Ir Iridium 7439-88-5 Very hard and brittle, silvery metallic transition element. It has a yellowish cast to it. Salts of iridium are highly colored. It is the most corrosion resistant metal known, not attacked by any acid, but is attacked by molten salts. There are two natural isotopes of iridium, and 4 radioisotopes, the most stable being Ir-192 with a half-life of 73.83 days. Ir-192 decays into Platinum, while the other radioisotopes decay into Osmium. Iridium is used in high temperature apparatus, electrical contacts, and as a hardening agent for platinumpy. Discovered in 1803 by Smithson Tennant in England. The name comes from the Greek word iris, which means rainbow. Iridium metal is generally non-toxic due to its relative unreactivity, but iridium compounds should be considered highly toxic. [Xe] 4f14 5d7 6s2
78 Pt Platinum 7440-06-4 Attractive greyish-white metal. When pure, it is malleable and ductile. Does not oxidize in air, insoluble in hydrochloric and nitric acid. Corroded by halogens, cyandies, sulphur and alkalis. Hydrogen and Oxygen react explosively in the presence of platinumpy. There are six stable isotopes and three radioisotopes, the most stable being Pt-193 with a half-life of 60 years. Platinum is used in jewelry, laboratory equipment, electrical contacts, dentistry, and anti-pollution devices in cars. PtCl2(NH3)2 is used to treat some forms of cancer. Platinum-Cobalt alloys have magnetic properties. It is also used in the definition of the Standard Hydrogen Electrode. Discovered by Antonio de Ulloa in South America in 1735. The name comes from the Spanish word platina which means silver. Platinum metal is generally not a health concern due to its unreactivity, however platinum compounds should be considered highly toxic. [Xe] 4f14 5d9 6s
79 Au Gold 7440-57-5 Gold is gold colored. It is the most malleable and ductile metal known. There is only one stable isotope of gold, and five radioisotopes of gold, Au-195 being the most stable with a half-life of 186 days. Gold is used as a monetary standard, in jewelry, dentistry, electronics. Au-198 is used in treating cancer and some other medical conditions. Gold has been known to exist as far back as 2600 BC. Gold comes from the Anglo-Saxon word gold. Its symbol, Au, comes from the Latin word aurum, which means gold. Gold is not particularly toxic, however it is known to cause damage to the liver and kidneys in some. [Xe] 4f14 5d10 6s
80 Hg Mercury 7439-97-6 Heavy silvery liquid metallic element, belongs to the zinc group. Used in thermometers, barometers and other scientific apparatus. Less reactive than zinc and cadmium, does not displace hydrogen from acids. Forms a number of complexes and organomercury compounds. [Xe] 4f14 5d10 6s2
81 Tl Thallium 7440-28-0 Pure, unreacted thallium appears silvery-white and exhibits a metallic lustre. Upon reacting with air, it begins to turn bluish-grey and looks like lead. It is very malleable, and can be cut with a knife. There are two stable isotopes, and four radioisotopes, Tl-204 being the most stable with a half-life of 3.78 years. Thallium sulphate was used as a rodenticide. Thallium sulphine's conductivity changes with exposure to infrared light, this gives it a use in infrared detectors. Discovered by Sir William Crookes via spectroscopy. Its name comes from the Greek word thallos, which means green twig. Thallium and its compounds are toxic and can cause cancer. [Xe] 4f14 5d10 6s2 6p
82 Pb Lead 7439-92-1 Heavy dull grey ductile metallic element, belongs to group 14. Used in building construction, lead-place accumulators, bullets and shot, and is part of solder, pewter, bearing metals, type metals and fusible alloys. [Xe] 4f14 5d10 6s2 6p2
83 Bi Bismuth 7440-69-9 White crystalline metal with a pink tinge, belongs to group 15. Most diamagnetic of all metals and has the lowest thermal conductivity of all the elements except mercury. Lead-free bismuth compounds are used in cosmetics and medical procedures. Burns in the air and produces a blue flame. In 1753, C.G. Junine first demonstrated that it was different from lead. [Xe] 4f14 5d10 6s2 6p3
84 Po Polonium 7440-08-6 Rare radioactive metallic element, belongs to group 16 of the periodic table. Over 30 known isotopes exist, the most of all elements. Po-209 has a half-life of 103 years. Possible uses in heating spacecraft. Discovered by Marie Curie in 1898 in a sample of pitchblende. [Xe] 4f14 5d10 6s2 6p4
85 At Astatine 7440-68-8 Radioactive halogen element. Occurs naturally from uranium and thorium decay. At least 20 known isotopes. At-210, the most stable, has a half-life of 8.3 hours. Synthesized by nuclear bombardment in 1940 by D.R. Corson, K.R. MacKenzie and E. Segre at the University of California. [Xe] 4f14 5d10 6s2 6p5
86 Rn Radon 10043-92-2 Colorless radioactive gaseous element, belongs to the noble gases. Of the twenty known isotopes, the most stable is Rn-222 with a half-life of 3.8 days. Formed by the radioactive decay of Radium-226. Radon itself decays into Polonium. Used in radiotherapy. As a noble gas, it is effectively inert, though radon fluoride has been synthesized. First isolated in 1908 by Ramsey and Gray. [Xe] 4f14 5d10 6s2 6p6
87 Fr Francium 7440-73-5 Radioactive element, belongs to group 1 of the periodic table. Found in uranium and thorium ores. The 22 known isotopes are all radioactive, with the most stable being Fr-223. Its existence was confirmed in 1939 by Marguerite Perey. [Rn] 7s
88 Ra Radium 7440-14-4 Radioactive metallic transuranic element, belongs to group 2 of the periodic table. Most stable isotope, Ra-226 has a half-life of 1602 years, which decays into radon. Isolated from pitchblende in 1898 Marie and Pierre Curie. [Rn] 7s2
89 Ac Actinium 7440-34-8 Silvery radioactive metallic element, belongs to group 3 of the periodic table. The most stable isotope, Ac-227, has a half-life of 217 years. Ac-228 (half-life of 6.13 hours) also occurs in nature. There are 22 other artificial isotopes, all radioactive and having very short half-lives. Chemistry similar to lanthanumpy. Used as a source of alpha particles. Discovered by A. Debierne in 1899. [Rn] 6d 7s2
90 Th Thorium 7440-29-1 Grey radioactive metallic element. Belongs to actinoids. Found in monazite sand in Brazil, India and the US. Thorium-232 has a half-life of 1.39x10^10 years. Can be used as a nuclear fuel for breeder reactors. Thorium-232 captures slow Neutrons and breeds uranium-233. Discovered by Jons J. Berzelius in 1829. [Rn] 6d2 7s2
91 Pa Protactinium 7440-13-3 Radioactive metallic element, belongs to the actinoids. The most stable isotope, Pa-231 has a half-life of 2.43*10^4 years. At least 10 other radioactive isotopes are known. No practical applications are known. Discovered in 1917 by Lise Meitner and Otto Hahn. [Rn] 5f2 6d 7s2
92 U Uranium 7440-61-1 White radioactive metallic element belonging to the actinoids. Three natural isotopes, U-238, U-235 and U-234. Uranium-235 is used as the fuel for nuclear reactors and weapons. Discovered by Martin H. Klaproth in 1789. [Rn] 5f3 6d 7s2
93 Np Neptunium 7439-99-8 Radioactive metallic transuranic element, belongs to the actinoids. Np-237, the most stable isotope, has a half-life of 2.2*10^6 years and is a by product of nuclear reactors. The other known isotopes have mass numbers 229 through 236, and 238 through 241. Np-236 has a half-life of 5*10^3 years. First produced by Edwin M. McMillan and P.H. Abelson in 1940. [Rn] 5f4 6d 7s2
94 Pu Plutonium 7440-07-5 Dense silvery radioactive metallic transuranic element, belongs to the actinoids. Pu-244 is the most stable isotope with a half-life of 7.6*10^7 years. Thirteen isotopes are known. Pu-239 is the most important, it undergoes nuclear fission with slow neutrons and is hence important to nuclear weapons and reactors. Plutonium production is monitored down to the gram to prevent military misuse. First produced by Gleen T. Seaborg, Edwin M. McMillan, J.W. Kennedy and A.C. Wahl in 1940. [Rn] 5f6 7s2
95 Am Americium 7440-35-9 Radioactive metallic transuranic element, belongs to the actinoids. Ten known isotopes. Am-243 is the most stable isotope, with a half-life of 7.95*10^3 years. Discovered by Glenn T. Seaborg and associates in 1945, it was obtained by bombarding Uranium-238 with alpha particles. [Rn] 5f7 7s2
96 Cm Curium 7440-51-9 Radioactive metallic transuranic element. Belongs to actinoid series. Nine known isotopes, Cm-247 has a half-life of 1.64*10^7 years. First identified by Glenn T. Seaborg and associates in 1944, first produced by L.B. Werner and I. Perlman in 1947 by bombarding americium-241 with Neutrons. Named for Marie Curie. [Rn] 5f7 6d 7s2
97 Bk Berkelium 7440-40-6 Radioactive metallic transuranic element. Belongs to actinoid series. Eight known isotopes, the most common Bk-247, has a half-life of 1.4*10^3 years. First produced by Glenn T. Seaborg and associates in 1949 by bombarding americium-241 with alpha particles. [Rn] 5f9 7s2
98 Cf Californium 7440-71-3 Radioactive metallic transuranic element. Belongs to actinoid series. Cf-251 has a half life of about 700 years. Nine isotopes are known. Cf-252 is an intense Neutron source, which makes it an intense Neutron source and gives it a use in Neutron activation analysis and a possible use as a radiation source in medicine. First produced by Glenn T. Seaborg and associates in 1950. [Rn] 5f10 7s2
99 Es Einsteinium 7429-92-7 Appearance is unknown, however it is most probably metallic and silver or gray in color. Radioactive metallic transuranic element belonging to the actinoids. Es-254 has the longest half-life of the eleven known isotopes at 270 days. First identified by Albert Ghiorso and associates in the debris of the 1952 hydrogen bomb explosion. In 1961 the first microgram quantities of Es-232 were separated. While einsteinium never exists naturally, if a sufficient amount was assembled, it would pose a radiation hazard. [Rn] 5f11 7s2
100 Fm Fermium 7440-72-4 Radioactive metallic transuranic element, belongs to the actinoids. Ten known isotopes, most stable is Fm-257 with a half-life of 10 days. First identified by Albert Ghiorso and associates in the debris of the first hydrogen-bomb explosion in 1952. [Rn] 5f12 7s2
101 Md Mendelevium 7440-11-1 Radioactive metallic transuranic element. Belongs to the actinoid series. Only known isotope, Md-256 has a half-life of 1.3 hours. First identified by Glenn T. Seaborg, Albert Ghiorso and associates in 1955. Alternative name Unnilunium has been proposed. Named after the 'inventor' of the periodic table, Dmitri Mendeleev. [Rn] 5f13 7s2
102 No Nobelium 10028-14-5 Radioactive metallic transuranic element, belongs to the actinoids. Seven known isotopes exist, the most stable being No-254 with a half-life of 255 seconds. First identified with certainty by Albert Ghiorso and Glenn T. Seaborg in 1966. Unnilbium has been proposed as an alternative name. [Rn] 5f14 7s2
103 Lr Lawrencium 22537-19-5 Appearance unknown, however it is most likely silvery-white or grey and metallic. Lawrencium is a synthetic rare-earth metal. There are eight known radioisotopes, the most stable being Lr-262 with a half-life of 3.6 hours. Due to the short half-life of lawrencium, and its radioactivity, there are no known uses for it. Identified by Albert Ghiorso in 1961 at Berkeley. It was produced by bombarding californium with boron ions. The name is temporary IUPAC nomenclature, the origin of the name comes from Ernest O. Lawrence, the inventor of the cyclotron. If sufficient amounts of lawrencium were produced, it would pose a radiation hazard. [Rn] 5f14 6d 7s2
104 Rf Rutherfordium 53850-36-5 Radioactive transactinide element. Expected to have similar chemical properties to those displayed by hafnium. Rf-260 was discovered by the Joint Nuclear Research Institute at Dubna (U.S.S.R.) in 1964. Researchers at Berkeley discovered Unq-257 and Unq-258 in 1964. [Rn] 5f14 6d2 7s2
105 Db Dubnium 53850-35-4 Also known as Hahnium, Ha. Radioactive transactinide element. Half-life of 1.6s. Discovered in 1970 by Berkeley researchers. So far, seven isotopes have been discovered. [Rn] 5f14 6d3 7s2
106 Sg Seaborgium 54038-81-2 Half-life of 0.9 +/- 0.2 s. Discovered by the Joint Institute for Nuclear Research at Dubna (U.S.S.R.) in June of 1974. Its existence was confirmed by the Lawrence Berkeley Laboratory and Livermore National Laboratory in September of 1974. [Rn] 5f14 6d4 7s2
107 Bh Bohrium 54037-14-8 Radioactive transition metal. Half-life of approximately 1/500 s. Discovered by the Joint Institute for Nuclear Research at Dubna (U.S.S.R.) in 1976. Confirmed by West German physicists at the Heavy Ion Research Laboratory at Darmstadt. [Rn] 5f14 6d5 7s2
108 Hs Hassium 54037-57-9 Radioactive transition metal first synthesized in 1984 by a German research team led by Peter Armbruster and Gottfried Muenzenberg at the Institute for Heavy Ion Research at Darmstadt. [Rn] 5f14 6d6 7s2
109 Mt Meitnerium 54038-01-6 Half-life of approximately 5 ms. The creation of this element demonstrated that fusion techniques could indeed be used to make new, heavy nuclei. Made and identified by physicists of the Heavy Ion Research Laboratory, Darmstadt, West Germany in 1982. Named in honor of Lise Meitner, the Austrian physicist. [Rn] 5f14 6d7 7s2
110 Ds Darmstadtium 54083-77-1 None [Rn] 5f14 6d9 7s1
111 Rg Roentgenium 54386-24-2 None [Rn] 5f14 6d10 7s1
112 Cn Copernicium 54084-26-3 None [Rn] 5f14 6d10 7s2
113 Nh Nihonium 54084-70-7 None [Rn] 5f14 6d10 7s2 7p1
114 Fl Flerovium 54085-16-4 None [Rn] 5f14 6d10 7s2 7p2
115 Mc Moscovium 54085-64-2 None [Rn] 5f14 6d10 7s2 7p3
116 Lv Livermorium 54100-71-9 None [Rn] 5f14 6d10 7s2 7p4
117 Ts Tennessine 87658-56-8 None [Rn] 5f14 6d10 7s2 7p5
118 Og Oganesson 54144-19-3 None [Rn] 5f14 6d10 7s2 7p6

<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
<Figure size 1152x432 with 0 Axes>
In [ ]:
 
In [ ]:
 
In [ ]:
 

Machine Learning

  1. Deal Banking Marketing Campaign Dataset With Machine Learning

TensorFlow

  1. Difference Between Scalar, Vector, Matrix and Tensor
  2. TensorFlow Deep Learning Model With IRIS Dataset
  3. Sequence to Sequence Learning With Neural Networks To Perform Number Addition
  4. Image Classification Model MobileNet V2 from TensorFlow Hub
  5. Step by Step Intent Recognition With BERT
  6. Sentiment Analysis for Hotel Reviews With NLTK and Keras
  7. Simple Sequence Prediction With LSTM
  8. Image Classification With ResNet50 Model
  9. Predict Amazon Inc Stock Price with Machine Learning
  10. Predict Diabetes With Machine Learning Algorithms
  11. TensorFlow Build Custom Convolutional Neural Network With MNIST Dataset
  12. Deal Banking Marketing Campaign Dataset With Machine Learning

PySpark

  1. How to Parallelize and Distribute Collection in PySpark
  2. Role of StringIndexer and Pipelines in PySpark ML Feature - Part 1
  3. Role of OneHotEncoder and Pipelines in PySpark ML Feature - Part 2
  4. Feature Transformer VectorAssembler in PySpark ML Feature - Part 3
  5. Logistic Regression in PySpark (ML Feature) with Breast Cancer Data Set

PyTorch

  1. Build the Neural Network with PyTorch
  2. Image Classification with PyTorch
  3. Twitter Sentiment Classification In PyTorch
  4. Training an Image Classifier in Pytorch

Natural Language Processing

  1. Spelling Correction Of The Text Data In Natural Language Processing
  2. Handling Text For Machine Learning
  3. Extracting Text From PDF File in Python Using PyPDF2
  4. How to Collect Data Using Twitter API V2 For Natural Language Processing
  5. Converting Text to Features in Natural Language Processing
  6. Extract A Noun Phrase For A Sentence In Natural Language Processing