Learn Coordinate Geometry With Intuitive Way - Part 1

Learn Coordinate Geometry With Intuitive Way - Part 1

No description has been provided for this image

Series: Python for kids

In our endavor to make learning fun and free of memorization, we have been using Python to allow children to experiment and analyze data to form their own opinion and discover facts. This way, children engage is learning process with more intensity and the they show higher retention rate vis a vis conventional learning.

This makes them think and try different things before they get it right. The focus shifts from being always ‘right’ to get it right after several failed attempts.

In this part of the series

Children create simple shapes using markers, move marker left, right , top and bottom. They learn coordinates geometry where the position of points on the plane.

In this blog we are using Matplotlibn library. Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy.

Import library

In [1]:
import matplotlib.pyplot as plt

Plot a point at (2, -5)

In [2]:
x = 2
y = -5

plt.plot(x, y, marker = 'o')
plt.show()
No description has been provided for this image

Increase size of point

In [3]:
plt.plot(x, y, marker = 'o', markersize = 15)
plt.show()
No description has been provided for this image

Add annotation to the point and set the limit of x axis an y axis

matplotlib.pyplot.xlim(*args, **kwargs): Get or set the x limits of the current axes.

matplotlib.pyplot.ylim(*args, **kwargs): Get or set the y limits of the current axes.

We are getting min and max of x and y value, after that setting the limits of X-axis between min and max value. Same thing we are doing to set Y-axis limit.

In [4]:
plt.plot(x, y, marker = 'o', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.2, y), xycoords='data')

xyMin = min(0, x, 0, y) - 1
xyMax = max(0, x, 0, y) + 1

plt.xlim(xyMin, xyMax)
plt.ylim(xyMin, xyMax)

plt.show()
No description has been provided for this image

Plot two points at (7, 0) and (1, -2) with annotation

In [5]:
x1 = 7
y1 = 0

x2 = 1
y2 = -2
In [6]:
plt.plot(x1, y1, marker = 'o', markersize = 15)
plt.plot(x2, y2, marker = 'o', markersize = 15)

xyMin = min(x1, y1, x2, y2) - 1
xyMax = max(x1, y1, x2, y2) + 1

plt.xlim(xyMin, xyMax)
plt.ylim(xyMin, xyMax)

plt.show()
No description has been provided for this image

Add anotations

In [7]:
plt.plot(x1, y1, marker = 'o', markersize = 15)
plt.plot(x2, y2, marker = 'o', markersize = 15)

plt.gca().annotate(f'({x1}, {y1})', xy=(x1 + 0.2, y1), xycoords='data')
plt.gca().annotate(f'({x2}, {y2})', xy=(x2 + 0.2, y2), xycoords='data')

xyMin = min(x1, y1, x2, y2) - 1
xyMax = max(x1, y1, x2, y2) + 1

plt.xlim(xyMin, xyMax)
plt.ylim(xyMin, xyMax)

plt.show()
No description has been provided for this image

Plot three points at (5, 0) , (-5, 2) and (1, -5) with annotation and make a triangle

Declare points

In [8]:
x1 = 5
y1 = 0

x2 = -5
y2 = 2

x3 = 1
y3 = -5

Plot triangle

In [9]:
plt.plot(x1, y1, marker = 'o', markersize = 15)
plt.plot(x2, y2, marker = 'o', markersize = 15)
plt.plot(x3, y3, marker = 'o', markersize = 15)

plt.plot((x1, x2, x3, x1), (y1, y2, y3, y1), color = 'red')

plt.gca().annotate(f'({x1}, {y1})', xy=(x1 + 0.2, y1), xycoords='data')
plt.gca().annotate(f'({x2}, {y2})', xy=(x2 + 0.2, y2), xycoords='data')
plt.gca().annotate(f'({x3}, {y3})', xy=(x3 + 0.2, y3), xycoords='data')

xyMin = min(x1, y1, x2, y2, x3, y3) - 1
xyMax = max(x1, y1, x2, y2, x3, y3) + 1

plt.xlim(xyMin, xyMax)
plt.ylim(xyMin, xyMax)

plt.show()
No description has been provided for this image

Walk like below:

Start from (2, -4) and plot the moves as follows:

  1. Go left by 4 and up by 5
  2. Go left by 3 and up by 6
  3. Go right by 10 and down by 4
  4. Go left by 10 and down by 7
  5. Go down by 5

Plot staring paint (2, -4)

In [10]:
x = 2
y = -4

plt.plot(x, y, marker = 'o', color = 'red', markersize = 10)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.2, y), xycoords='data')

plt.xlim(-15, 15)
plt.ylim(-15, 15)
plt.show()
No description has been provided for this image

Go left by 4 and up by 5 from starting point

In [11]:
x = 2
y = -4

plt.plot(x, y, marker = 'o', color = 'red', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5, y), xycoords='data')

#declare a starting point, which is x and y
xStart = x
yStart = y

#move left by 4, so x will be xstart + (-4)
#move up by 5, so y will be ystart + 5
x = xStart + -4
y = yStart + 5

plt.plot(x, y, marker = 'o', color = 'blue', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')


plt.xlim(-15, 15)
plt.ylim(-15, 15)
plt.show()
No description has been provided for this image

Go left by 3 and up by 6

In [12]:
x = 2
y = -4

plt.plot(x, y, marker = 'o', color = 'red', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5, y), xycoords='data')

xStart = x
yStart = y
x = xStart + -4
y = yStart + 5

plt.plot(x, y, marker = 'o', color = 'blue', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')


xStart = x
yStart = y
x = xStart + -3
y = yStart + 6

plt.plot(x, y, marker = 'o', color = 'yellow', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')



plt.xlim(-15, 15)
plt.ylim(-15, 15)
plt.show()
No description has been provided for this image

Go right by 10 and down by 4

In [13]:
x = 2
y = -4

plt.plot(x, y, marker = 'o', color = 'red', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5, y), xycoords='data')

xStart = x
yStart = y
x = xStart + -4
y = yStart + 5

plt.plot(x, y, marker = 'o', color = 'blue', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')


xStart = x
yStart = y
x = xStart + -3
y = yStart + 6

plt.plot(x, y, marker = 'o', color = 'yellow', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')

xStart = x
yStart = y
x = xStart + 10
y = yStart + -4

plt.plot(x, y, marker = 'o', color = 'purple', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')



plt.xlim(-15, 15)
plt.ylim(-15, 15)
plt.show()
No description has been provided for this image

Go left by 10 and down by 7

In [14]:
x = 2
y = -4

plt.plot(x, y, marker = 'o', color = 'red', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5, y), xycoords='data')

xStart = x
yStart = y
x = xStart + -4
y = yStart + 5

plt.plot(x, y, marker = 'o', color = 'blue', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')


xStart = x
yStart = y
x = xStart + -3
y = yStart + 6

plt.plot(x, y, marker = 'o', color = 'yellow', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')

xStart = x
yStart = y
x = xStart + 10
y = yStart + -4

plt.plot(x, y, marker = 'o', color = 'purple', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')


xStart = x
yStart = y
x = xStart + -10
y = yStart + -7

plt.plot(x, y, marker = 'o', color = 'green', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')

plt.xlim(-15, 15)
plt.ylim(-15, 15)
plt.show()
No description has been provided for this image

Go down by 5

In [15]:
x = 2
y = -4

plt.plot(x, y, marker = 'o', color = 'red', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5, y), xycoords='data')

xStart = x
yStart = y
x = xStart + -4
y = yStart + 5

plt.plot(x, y, marker = 'o', color = 'blue', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')


xStart = x
yStart = y
x = xStart + -3
y = yStart + 6

plt.plot(x, y, marker = 'o', color = 'yellow', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')

xStart = x
yStart = y
x = xStart + 10
y = yStart + -4

plt.plot(x, y, marker = 'o', color = 'purple', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')


xStart = x
yStart = y
x = xStart + -10
y = yStart + -7

plt.plot(x, y, marker = 'o', color = 'green', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')

xStart = x
yStart = y
x = xStart + 0
y = yStart + -5

plt.plot(x, y, marker = 'o', color = 'grey', markersize = 15)
plt.gca().annotate(f'({x}, {y})', xy=(x + 0.5 , y), xycoords='data')
plt.plot((xStart, x), (yStart, y), color = 'green')


plt.xlim(-15, 15)
plt.ylim(-15, 15)
plt.show()
No description has been provided for this image

Machine Learning

  1. Deal Banking Marketing Campaign Dataset With Machine Learning

TensorFlow

  1. Difference Between Scalar, Vector, Matrix and Tensor
  2. TensorFlow Deep Learning Model With IRIS Dataset
  3. Sequence to Sequence Learning With Neural Networks To Perform Number Addition
  4. Image Classification Model MobileNet V2 from TensorFlow Hub
  5. Step by Step Intent Recognition With BERT
  6. Sentiment Analysis for Hotel Reviews With NLTK and Keras
  7. Simple Sequence Prediction With LSTM
  8. Image Classification With ResNet50 Model
  9. Predict Amazon Inc Stock Price with Machine Learning
  10. Predict Diabetes With Machine Learning Algorithms
  11. TensorFlow Build Custom Convolutional Neural Network With MNIST Dataset
  12. Deal Banking Marketing Campaign Dataset With Machine Learning

PySpark

  1. How to Parallelize and Distribute Collection in PySpark
  2. Role of StringIndexer and Pipelines in PySpark ML Feature - Part 1
  3. Role of OneHotEncoder and Pipelines in PySpark ML Feature - Part 2
  4. Feature Transformer VectorAssembler in PySpark ML Feature - Part 3
  5. Logistic Regression in PySpark (ML Feature) with Breast Cancer Data Set

PyTorch

  1. Build the Neural Network with PyTorch
  2. Image Classification with PyTorch
  3. Twitter Sentiment Classification In PyTorch
  4. Training an Image Classifier in Pytorch

Natural Language Processing

  1. Spelling Correction Of The Text Data In Natural Language Processing
  2. Handling Text For Machine Learning
  3. Extracting Text From PDF File in Python Using PyPDF2
  4. How to Collect Data Using Twitter API V2 For Natural Language Processing
  5. Converting Text to Features in Natural Language Processing
  6. Extract A Noun Phrase For A Sentence In Natural Language Processing