

# Invest in your child's future today. Quality education is priceless!

Why You Should Join Our Learning Program



## We only labor to stuff the memory, and leave the conscience and the understanding unfurnished and void.

- Michel De Montaigne





## Knowledge Management (KM)

From grade II to Grade XII

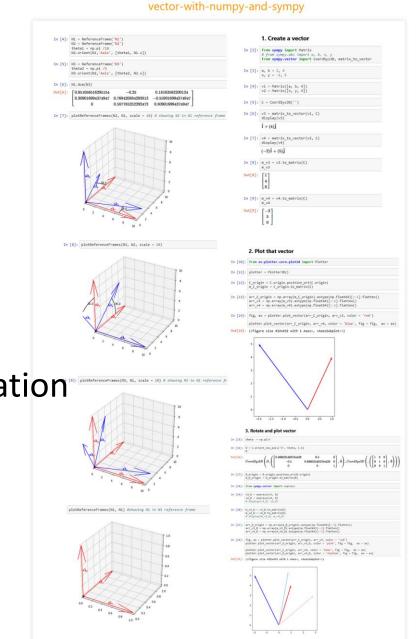
### Say No to Rote Learning!

Join our learning program today!





#### Contact us


- call or message on WhatsApp at +91 75699 33343, or
- email us at info@xcelvations.com



### cellations

### Highlights

- Online only sessions (Google Meet)
- No memorization
- No homework
- No extra assignments
- Programming as a language of communication
- 12 to 16 one-hour sessions per month





### What is Knowledge Management (KM)?

- KM is our learning software.
- A mix of algorithms, Al, content, and a philosophical change in the learning process.
- Faster and concept-based learning.
- Web and Python Jupyter-based interface.
- The interwoven conceptual content enables faster learning and includes in-built practice.
- Algorithm/Al-generated content and problems make it a neverexhausting resource for learning.



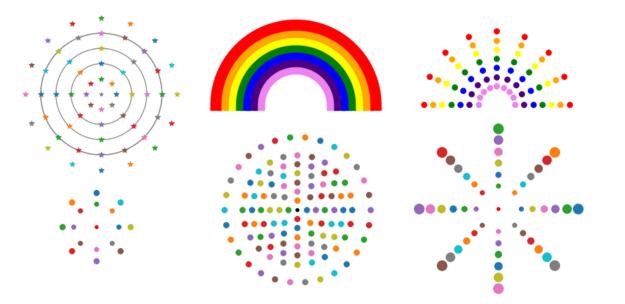
#### Curriculum on Offer

- Grade 2 to Grade 12
  - All subjects
  - A specific subject
  - Math, Physics, Chemistry
- SAT Grade 10 and Grade 12
- Art of Problem Solving (Math)
- Math Olympiad
- Science Olympiad
- English Olympiad





#### Subjects Covered


- Math
- Science
  - Physics
  - Chemistry
  - Math
  - Biology (up to Grade 10 only)
  - English
- Social Studies
  - for middle school only

Note: "Grade" refers to "Class".



#### Prerequisite

- We don't require any prior qualification test.
- There is no prerequisite standard or concept level needed to join our classes.
  - All topics start with foundational concepts, allowing students to cover any gaps in their knowledge.





#### We Start with Base Zero

- If students are already familiar with a topic, we cover it faster, but we still go through it.
- We aim to cover the current grade curriculum within the first six months of starting classes.
- The concepts may progress to higher-grade topics if:
  - Students continue to learn at a faster pace without difficulty.
  - The learning process remains efficient and effective.





Circle: cos vs sin

#### Programming

- No prior programming knowledge is required.
- Students use programming to enhance their understanding of subjects.
- Python with Jupyter is widely used in teaching
  - Programming helps in better understanding of concepts, computing, visualization, and theoretical exploration of the subjects they study.
- Al/Machine Learning is taught gradually over a 4-year period
  - to aid in understanding the application of mathematics
  - model building includes concepts of probability, calculus, geometry, statistical distributions, etc.

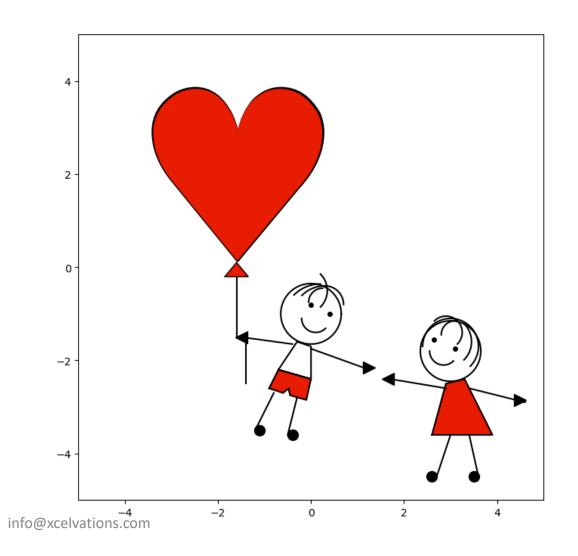
ax.axvline(x = 0, color = (0, 0, 0, .1))

67 ax.legend()
68
69 fig.tight\_layout()
70 plt.show()

ax.axhline(y = 0, color = (0, 0, 0, .1))

sin vs cos
 angle vs cos
 angle vs sin

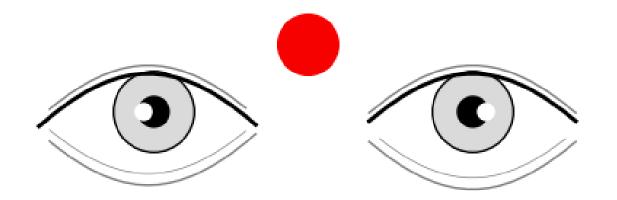
angle vs cos


• We don't offer a programming only classes.



### It is all about having fun while learning

+917569933343


- Programming to learn and have fun
- This image has been created by students of primary grade with matplotlib in Python programming.





#### Learning Art and Geometry through Programming

• This image has been created using trigonometric functions (sin, cos etc.) and matplotlib in Python





#### Books and Course Material

- KM provides content and questions.
- As mentioned earlier, most of the material is delivered through Python Jupyter.
- It offers extensive content for learning and repeated practice (though we discourage the latter).
- We do not prescribe any specific books.
- A wide range of publicly available videos from various sources is also utilized.



#### 💭 Jupyter<mark>hub</mark>

| C                                               | 🔲 0 👻 🖿 / xv-jupyter-notebooks | s / managers | / math / basicmaths                                                                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------|--------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| probability                                     |                                |              |                                                                                                                                                                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>basicmaths</li> <li>algebra</li> </ul> | LogarithmManager.ipynb         | In [1]:      | 1 from xv.math.basicmaths import l                                                                                                                                                                                              | LogarithmManager                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| vector                                          | NumberUnitManager.ipynb        | In [2]:      | 1 ke = LogarithmManager()                                                                                                                                                                                                       |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| geometry                                        | NumberSystemManager.ipynb      |              | 2 ke                                                                                                                                                                                                                            | In [3]: 1                                                                       | <pre>ke.printProblemTypes()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C calculus                                      | SeriesPatternManager.ipynb     | Out[2]:      | 140448624636592@LogarithmManager                                                                                                                                                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Series                                          | RatioManager.ipynb             |              | verbose = False                                                                                                                                                                                                                 |                                                                                 | problem_concept_of_log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C trigonometry                                  | SimpleArithmeticManager.ipynb  | )            |                                                                                                                                                                                                                                 |                                                                                 | _problem_general_concept_of_log<br>_problem_why_concept_of_log                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 | DewerManager.ipynb             |              | Logarithm Concepts                                                                                                                                                                                                              |                                                                                 | problem_simple_log_expr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                 | DecimalOperationManager.ipyn   | -<br>It      | Example:                                                                                                                                                                                                                        |                                                                                 | problem_find_log_of_product_series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 | ☐                              |              | ke = LogarithmManager()<br>ke.getRandomProblem()<br>ke.getRandomProblem(problem_type = 0)<br>ke.getRandomProblem(problem_type = 1)<br><br>ke.printProblem()<br>ke.printAnswer()<br>ke.printSolution()<br>ke.printProblemTypes() | 6<br>7<br>8<br>9<br>10.<br>11.<br>12.<br>13.<br>14.<br>15.<br>16.<br>17.<br>18. | <pre>problem_find_log_of_product_strics<br/>problem_find_log_of_product_of_pairs<br/>problem_find_log_of_exp_to_exp<br/>problem_find_log_of_exp_product<br/>problem_find_log_of_div_exp_both<br/>_problem_log_and_exponent<br/>_problem_log_reciprocal<br/>_problem_log_chain_rule<br/>_problem_product_of_two_terms<br/>_problem_div_of_two_terms<br/>_problem_simplify_log_in_exponent<br/>_problem_log_of_multi_terms<br/>_problem_log_of_common_numbers<br/>_problem_log_of_common_numbers<br/>_problem_custom_questions</pre> |



In [4]: 1 ke.getRandomProblem(problem\_type = 0)

#### $\texttt{Out[4]:} \quad \text{Explain the concept of log on base 10}.$

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In [5]: | 1 ke.printAnswer()    |         |                                                   |                                                    |                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|---------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------|
| Out[6]:       We write numbers like this:         log(ten) = 1       ten = 10 (1 followed by 1 zero)         log(10) = 1       Hundred = 100 (1 followed by 2 zeroes)         log(100) = 2       Million = 1000000 (1 followed by 3 zeroes)         log(100) = 2       Million = 100000000 (1 followed by 9 zeroes)         log(100) = 2       Million = 1000000000 (1 followed by 9 zeroes)         log(1000) = 3       ff ask you to tell me only zeroes in the number         log(100000000) = 6       Number of zeroes in ten = 1         log(1000000000) = 6       Number of zeroes in 10 = 1         log(1000000000) = 9       Number of zeroes in 100 = 2         log(Trillion) = 12       Number of zeroes in Thousand = 3         log(10000000000) = 12       Number of zeroes in 1000 = 3         Number of zeroes in 1000 = 3       Million = 10000000 (1 followed b 9 zeroes)         log(10000000000) = 12       Number of zeroes in 1000 = 3         Number of zeroes in 1000 = 3       Million = 1000000000 (1 followed b 9 zeroes)         log(100000000000) = 12       Number of zeroes in 1000 = 3         Number of zeroes in 1000 = 3       Million = 100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Out[5]. | Log of numbers:       | In [6]: | <pre>1 ke.printSolution()</pre>                   |                                                    |                                              |
| log(10) = 1Hundred = 100 (1 followed by 2 zeroes)<br>Thousand = 1000 (1 followed by 3 zeroes)<br>Million = 1000000000 (1 followed by 9 zeroes)<br>Trillion = 1000000000 (1 followed by 9 zeroes)<br>Trillion = 10000000000 (1 followed by 9 zeroes)<br>Trillion = 100000000000 (1 followed by 9 zeroes)<br>Iog(1000) = 3Log of numbers:<br>Iog(100000000) (1 followed by 9 zeroes)<br>Iog(10000000) = 6log(Million) = 6<br>log(100000000) = 6Number of zeroes in ten = 1<br>Number of zeroes in 10 = 1Thousand = 1000 (1 followed by 3 zeroes.)<br>Iog(100000000) = 3Log of numbers:<br>Iog(100) = 2log(Billion) = 9<br>log(1000000000) = 9Number of zeroes in thousand = 3<br>Number of zeroes in 100 = 3Number of zeroes in Thousand = 3<br>Number of zeroes in 1000 = 3Million = 1000000 (1 followed by 9 zeroes.)<br>Iog(Million) = 6<br>Iog(1000000000) = 9Iog(Million) = 6<br>Iog(1000000000) = 9Number of zeroes in Million = 6<br>Number of zeroes in 1000000 = 6Number of zeroes in 100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000[0]. | Log of humbers.       | Out[6]: | We write numbers like this:                       |                                                    |                                              |
| Thousand = 1000 (1 followed by 3 zeroes)log(Hundred) = 2<br>log(100) = 2Million = 1000000 (1 followed by 6 zeroes)<br>Billion = 10000000000 (1 followed by 9 zeroes)<br>Trillion = 100000000000 (1 followed by 9 zeroes)<br>Trillion = 100000000000 (1 followed by 9 zeroes)<br>Trillion = 100000000000 (1 followed by 12 zeroes)ten = 10 (1 followed by 1 zero.)<br>log(10) = 1Log of numbers:<br>log(10) = 1log(Thousand) = 3<br>log(100000) = 6If I ask you to tell me only zeroes in the number<br>log(1000000) = 6Hundred = 10<br>Number of zeroes in ten = 1<br>Number of zeroes in 10 = 1Hundred = 100 (1 followed by 2 zeroes.)<br>log(1000 = 2Log of numbers:<br>log(100) = 2log(Billion) = 6<br>log(100000000) = 9Number of zeroes in 10 = 1Thousand = 1000 (1 followed by 3 zeroes.)<br>log(100000000) = 3log(Hundred) = 2<br>log(1000) = 3log(Hundred) = 2<br>log(1000) = 3log(Trillion) = 12<br>log(10000000000) = 12Number of zeroes in Thousand = 3<br>Number of zeroes in 100 = 3Number of zeroes in 100 = 3log(Million) = 6<br>log(10000000) = 6log(Million) = 6<br>log(10000000) = 9log(Million) = 6<br>log(10000000) = 9Number of zeroes in 1000000 = 6<br>Number of zeroes in 1000000 = 6Number of zeroes in 1000000 = 6Billion = 100000000 (1 followed by 9 zeroes.)<br>log(Billion) = 9<br>log(1000000000) = 9log(Billion) = 9<br>log(100000000) = 9log(Billion) = 9<br>log(100000000) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | log(ten) = 1          |         | ten = 10 (1 followed by 1 zero)                   | So, let us summarize:                              |                                              |
| log(Hundred) = 2<br>log(100) = 2Million = 1000000 (1 followed by 6 zeroes)<br>Billion = 10000000000 (1 followed by 9 zeroes)<br>Trillion = 100000000000 (1 followed by 9 zeroes)<br>Trillion = 100000000000 (1 followed by 9 zeroes)<br>Trillion = 100000000000 (1 followed by 12 zeroes)log(ten) = 1<br>log(10) = 1Log of numbers:<br>log(100) = 2log(Million) = 6<br>log(1000000) = 6Number of zeroes in ten = 1<br>Number of zeroes in 10 = 1Number of zeroes in 10 = 1log(100) = 2log(100) = 2log(100) = 2log(100000000) = 6Number of zeroes in Hundred = 2<br>log(100000000) = 9Number of zeroes in 100 = 2log(10000000 (1 followed by 6 zeroes.))<br>log(10000000 (1 followed by 6 zeroes.))<br>log(100000000 (1 followed by 6 zeroes.))<br>log(100000000 (1 followed by 9 zeroes.))<br>log(100000000 (1 followed by 9 zeroes.))<br>log(100000000 (1 followed by 9 zeroes.))<br>log(10000000 (1 followed by 9 zeroes.))<br>log(100000000 (1 followed by 9 zeroes.))<br>log(10                                                                                                                                                                                            |         | log(10) = 1           |         | Hundred = 100 (1 followed by 2 zeroes)            |                                                    |                                              |
| log(100) = 2Billion = 100000000 (1 followed by 9 zeroes)<br>Trillion = 100000000000 (1 followed by 12 zeroes)<br>Iog(1000) = 3Log of numbers:<br>Iog(10) = 1log(1000) = 3If I ask you to tell me only zeroes in the number<br>log(100000) = 6Hundred = 100 (1 followed by 2 zeroes.)<br>Iog(Hundred) = 2<br>Iog(1000 = 2Log of numbers:<br>Iog(100 = 2log(Million) = 6<br>log(100000000) = 6Number of zeroes in ten = 1<br>Number of zeroes in 10 = 1Thousand = 1000 (1 followed by 3 zeroes.)<br>Iog(Thousand) = 3<br>Iog(1000 = 3Iog(Hundred) = 2<br>Iog(1000 = 2Iog(Hundred) = 2<br>Iog(1000 = 3log(1000000000) = 9Number of zeroes in 100 = 2Mumber of zeroes in 100 = 2Iog(100000 (1 followed by 6 zeroes.))<br>Iog(10000000 = 6Iog(Thousand = 3<br>Iog(1000000 = 6log(10000000000) = 12Number of zeroes in Million = 6<br>Number of zeroes in 1000000 = 6Million = 100000000 (1 followed by 9 zeroes.))<br>Iog(100000000 = 6Iog(Million) = 6<br>Iog(10000000 = 9Number of zeroes in Billion = 9<br>Number of zeroes in Billion = 9<br>Iog(1000000000 = 9Billion = 100000000 (1 followed by 9 zeroes.)Iog(Billion) = 9<br>Iog(100000000 = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                       |         | Thousand = 1000 (1 followed by 3 zeroes)          | ten = 10 (1 followed by 1 zero.)                   |                                              |
| Indig(10)Trillion = 100000000000 (1 followed by 12 zeroes)Indig(10)Indig(10)Iog(Thousand) = 3<br>log(1000) = 3If I ask you to tell me only zeroes in the numberHundred = 100 (1 followed by 2 zeroes.)Iog(100) = 2Iog(Million) = 6<br>log(1000000) = 6Number of zeroes in ten = 1<br>Number of zeroes in 10 = 1Number of zeroes in 10 = 1Iog(100) = 2Iog(Billion) = 9<br>log(100000000) = 9Number of zeroes in Hundred = 2<br>Number of zeroes in 100 = 2Number of zeroes in 100 = 2Iog(1000) = 3Iog(Trillion) = 12<br>log(1000000000) = 12Number of zeroes in Thousand = 3<br>Number of zeroes in 1000 = 3Number of zeroes in 1000 = 3<br>log(100000000) = 6Iog(Million) = 6<br>log(10000000) = 6Iog(Million) = 6<br>log(10000000) = 9Number of zeroes in Billion = 9<br>Number of zeroes in Billion = 9<br>log(1000000000) = 9Number of zeroes in Billion = 9<br>log(100000000) = 9Billion = 1000000000 (1 followed by 9 zeroes.)<br>log(Billion) = 9<br>log(100000000) = 9Iog(Billion) = 9<br>log(100000000) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | log(Hundred) = 2      |         | Million = 1000000 (1 followed by 6 zeroes)        | log(ten) = 1                                       |                                              |
| Trillion = 100000000000 (1 followed by 12 zeroes)Log of numbers:log(1000) = 3I ask you to tell me only zeroes in the numbeLog of numbers:log(1000) = 3I ask you to tell me only zeroes in the numbeLog of numbers:log(Million) = 6Number of zeroes in ten = 1log(1000000) = 2log(1000000) = 2log(Billion) = 9Number of zeroes in 10 = 1log(10000000000) = 3log(1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | log(100) = 2          |         | Billion = 1000000000 (1 followed by 9 zeroes)     |                                                    |                                              |
| log(1000) = 3If I ask you to tell me only zeroes in the numberlog(Hundred) = 2log(Hundred) = 2log(Million) = 6Number of zeroes in ten = 1Number of zeroes in 10 = 1log(100) = 2log(100) = 2log(Billion) = 9Number of zeroes in 10 = 1Thousand = 1000 (1 followed by 3 zeroes.)log(Hundred) = 2log(100000000) = 9Number of zeroes in Hundred = 2log(1000) = 3log(1000) = 3log(Trillion) = 12Number of zeroes in Thousand = 3log(Million) = 6log(1000000) = 6log(1000000000) = 12Number of zeroes in Million = 6log(100000000) = 6log(Million) = 6Number of zeroes in 1000 = 3Number of zeroes in 1000 = 3log(100000000) = 9log(Million) = 6Number of zeroes in 1000 = 6Number of zeroes in 10000000 = 6log(1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                       |         | Trillion = 100000000000 (1 followed by 12 zeroes) |                                                    | 1                                            |
| log(Nillion) = 6<br>log(1000000) = 6Number of zeroes in ten = 1<br>Number of zeroes in 10 = 1Iog(100) = 2Iog(100) = 2log(Billion) = 9<br>log(100000000) = 9Number of zeroes in Hundred = 2<br>Number of zeroes in 100 = 2Iog(Thousand) = 3<br>log(1000) = 3Iog(Hundred) = 2<br>log(1000) = 3log(Trillion) = 12<br>log(1000000000) = 12Number of zeroes in Thousand = 3<br>Number of zeroes in 1000 = 3Number of zeroes in 1000 = 3<br>log(100000000) = 6Iog(Thousand) = 3<br>log(10000000) = 6Iog(Thousand) = 3<br>log(10000000) = 6Number of zeroes in Sillion = 6<br>Number of zeroes in Billion = 9<br>Number of zeroes in Billion = 9Number of zeroes in Billion = 9<br>log(100000000) = 9Billion = 1000000000 (1 followed by 9 zeroes.)<br>log(Billion) = 9<br>log(100000000) = 9Iog(Billion) = 9<br>log(100000000) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | log(Thousand) = 3     |         |                                                   | Hundred = 100 (1 followed by 2 zeroes.)            | Log of numbers:                              |
| log(Million) = 6<br>log(1000000) = 6Number of zeroes in ten = 1<br>Number of zeroes in 10 = 1Integration of ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | log(1000) = 3         |         | If I ask you to tell me only zeroes in the numbe  | log(Hundred) = 2                                   |                                              |
| log(1000000) = 6Number of zeroes in 10 = 1Thousand = 1000 (1 followed by 3 zeroes.)log(10) = 1log(Billion) = 9Number of zeroes in Hundred = 2log(1000) = 3log(1000) = 3log(1000) = 2log(Trillion) = 12Number of zeroes in Thousand = 3log(1000000) = 6log(1000000) = 6log(1000000) = 6Number of zeroes in Million = 6Number of zeroes in 1000 = 3log(1000000) = 6log(1000000) = 6Number of zeroes in 1000000 = 6Number of zeroes in 1000000 = 6log(10000000) = 9log(1000000) = 9Number of zeroes in Billion = 9Number of zeroes in Billion = 9log(100000000) = 9log(Billion) = 9Number of zeroes in Billion = 9Number of zeroes in Billion = 9log(1000000000) = 9log(Billion) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                       |         |                                                   | $\log(100) = 2$                                    | log(ten) = 1                                 |
| log(Fillion) = 9 $log(Billion) = 9$ $log(100000000) = 9$ Number of zeroes in Hundred = 2<br>log(1000000000) = 9 Number of zeroes in 100 = 2 Number of zeroes in Thousand = 3<br>log(10000000000) = 12 Number of zeroes in Thousand = 3<br>log(10000000000) = 12 Number of zeroes in 1000 = 3 Number of zeroes in 1000 = 3 Number of zeroes in 10000 = 6 Number of zeroes in 1000000 = 6 Number of zeroes in Billion = 9 Number of zeroes in Billion = 0 Number of zeroes in Billion = 9 Number of zeroes in Billion = 9 Number of zeroes in Billion = 0 Number of zeroes in Billion = 9 Number of zeroes in Billion = 9 Number of zeroes in Billion = 0 Number of zeroes in Billion = 9 Number of zeroes in Billion = 9 Number of zeroes in Billion = 9 Number of zeroes in Billion = 0 Number of zeroes in Billion = 9 Num |         | log(Million) = 6      |         |                                                   |                                                    | log(10) = 1                                  |
| log(Billion) = 9<br>log(100000000) = 9Number of zeroes in Hundred = 2<br>Number of zeroes in 100 = 2log(1000) = 3log(100) = 2log(Trillion) = 12<br>log(10000000000) = 12Number of zeroes in Thousand = 3<br>Number of zeroes in 1000 = 3Number of zeroes in 1000 = 3log(Million) = 6<br>log(10000000) = 6log(1000) = 3Number of zeroes in Million = 6<br>Number of zeroes in 1000000 = 6Number of zeroes in 1000000 = 6log(100000000 (1 followed by 9 zeroes.))<br>log(Billion) = 9<br>log(100000000) = 9log(100000000) = 9log(Billion) = 9<br>log(10000000) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | log(100000) = 6       |         | Number of zeroes in 10 = 1                        | Thousand = 1000 (1 followed by 3 zeroes.)          |                                              |
| log(1000)0000) = 9Number of zeroes in 100 = 2Number of zeroes in Thousand = 3<br>log(1000000000) = 12Number of zeroes in Thousand = 3<br>Number of zeroes in 1000 = 3Number of zeroes in 1000 = 3Number of zeroes in 1000 = 3Number of zeroes in Million = 6<br>log(10000000 = 6Number of zeroes in 1000000 = 6Number of zeroes in 100000000 = 6Number of zeroes in 10000000 = 6Number of zeroes in 1000000 = 6Number of zeroes in 10000000 = 6Number of zeroes in 10000000 = 6Number of zeroes in 10000000 = 6Number of zeroes in 100000000 = 6Number of zeroes in 1000000000 = 6Number of zeroes                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                       |         |                                                   | log(Thousand) = 3                                  | log(Hundred) = 2                             |
| log(1000000000) = 3Number of zeroes in Thousand = 3<br>log(100000000000) = 12Number of zeroes in 1000 = 3Million = 1000000 (1 followed by 6 zeroes.)<br>log(Million) = 6<br>log(1000000) = 6log(Thousand) = 3<br>log(1000000) = 6Number of zeroes in Million = 6<br>Number of zeroes in 1000000 = 6Number of zeroes in 1000000 = 6log(Million) = 6<br>log(Billion) = 9<br>log(10000000) = 9log(Million) = 6<br>log(Billion) = 9<br>log(10000000) = 9log(Million) = 6<br>log(Billion) = 9<br>log(10000000) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | log(Billion) = 9      |         |                                                   | log(1000) = 3                                      | log(100) = 2                                 |
| log(Trillion) = 12Number of zeroes in Thousand = 3<br>Number of zeroes in 1000 = 3 $log(Million) = 6$<br>$log(1000000) = 6$ $log(1000) = 3$ Number of zeroes in Million = 6<br>Number of zeroes in 1000000 = 6Number of zeroes in Million = 6<br>$log(Billion) = 9$ $log(Million) = 6$<br>$log(Billion) = 9$ $log(Million) = 6$<br>$log(1000000) = 6$ $log(Million) = 6$<br>$log(1000000) = 6$ Number of zeroes in Billion = 9<br>Number of zeroes in Billion = 9Number of zeroes in Billion = 9<br>$log(10000000) = 9$ $log(Billion) = 9$<br>$log(10000000) = 9$ $log(Billion) = 9$<br>$log(10000000) = 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | log(100000000) = 9    |         | Number of zeroes in 100 = 2                       |                                                    |                                              |
| log(10000000000) = 12 Number of zeroes in 1000 = 3 Number of zeroes in Million = 6 Number of zeroes in 1000000 = 6 Number of zeroes in 1000000 = 6 Number of zeroes in Billion = 9 Number o |         |                       |         |                                                   | Million = 1000000 (1 followed by 6 zeroes.)        | log(Thousand) = 3                            |
| Number of zeroes in Million = 6       Number of zeroes in 1000000 = 6       Iog(10000000 = 6       Iog(Million) = 6         Number of zeroes in 1000000 = 6       Iog(100000000 = 9       Iog(100000000 = 9       Iog(Billion) = 9         Number of zeroes in Billion = 9       Iog(100000000 = 9       Iog(100000000 = 9       Iog(Billion) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | log(Trillion) = 12    |         |                                                   | log(Million) = 6                                   | log(1000) = 3                                |
| Number of zeroes in Million = 6         Billion = 100000000 (1 followed by 9 zeroes.)         log(1000000) = 6           Number of zeroes in 1000000 = 6         log(Billion) = 9         log(10000000) = 9         log(Billion) = 9           Number of zeroes in Billion = 9         log(100000000) = 9         log(100000000) = 9         log(100000000) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | log(10000000000) = 12 |         | Number of zeroes in 1000 = 3                      | log(100000) = 6                                    |                                              |
| Number of zeroes in 1000000 = 6         Iog(Billion) = 9         Iog(10000000) = 6           Number of zeroes in Billion = 9         Iog(100000000) = 9         Iog(100000000) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                       |         |                                                   |                                                    | log(Million) = 6                             |
| Number of zeroes in Billion = 9         log(100000000) = 9         log(100000000) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                       |         |                                                   | Billion = 1000000000 (1 followed by 9 zeroes.)     | log(100000) = 6                              |
| Number of zeroes in Billion = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                       |         | Number of zeroes in 1000000 = 6                   | log(Billion) = 9                                   |                                              |
| log(100000000) - 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                       |         |                                                   | log(100000000) = 9                                 | log(Billion) = 9                             |
| Number of zeroes in $10000000 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                       |         |                                                   |                                                    | log(100000000) = 9                           |
| Trillion = $10000000000 (1 followed by 12 zeroes.)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                       |         | Number of zeroes in 1000000000 = 9                | Trillion = 100000000000 (1 followed by 12 zeroes.) |                                              |
| +91 75699 33343 info b9(Tillion)= 12 log(10000000000) = 12 log(100000000000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                       |         | +91 75699 33343 inf                               |                                                    | log(Trillion) = 12<br>log(100000000000) = 12 |



-5v + 8x + 2z

-9v - w + x - 2y + 6z

### Some Managers from math.

| In [1]: 1 from xv.math.algebra import AlgebricExpressionManager<br>In [2]: 1 ke = AlgebricExpressionManager()<br>In [2]: 1 ke = AlgebricExpressionManager()<br>In [3]: 1 ke.printProblemTypes()<br>2 ke.printProblemTypes()<br>2 ke.printProblemTypes()<br>2 ke.printProblemTypes()<br>4 ke.printProblemTypes()<br>2 ke.printProblemTypes()<br>4 ke.printProblemTypes()<br>5 . problem_add<br>5 . problem_subtract<br>5 . problem_multiple_subtracts<br>5 . problem_multiply_subtracts<br>5 . problem_multiply_advanced<br>7 . problem_multiply_advanced<br>7 . problem_divide_advanced_1<br>9 . problem_divide_advanced_2<br>10 . problem_divide_advanced_3<br>11 . problem_divide_advanced_3<br>12 . problem_divide_advanced_3<br>13 . problem_divide_advanced_3<br>14 . problem_divide_advanced_3<br>15 . problem_divide_advanced_3<br>16 . problem_multiply_erov<br>17 . problem_divide_advanced_3<br>17 . problem_divide_advanced_3<br>18 . problem_ads_values<br>19 . problem_ads_values<br>10 . problem_ads_values<br>10 . problem_ads_values<br>10 . problem_ads_values<br>10 . problem_ads_values<br>11 . problem_ads_values<br>12 . problem_ads_values<br>13 . problem_ads_values<br>14 . r r r r r r r r r r r r r r r r r r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                                                                                                                                                                                                                                                               |                                                                                            | <i>yo w x 2y 02</i>                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In [2]: 1 ke = AlgebricExpressionManager()<br>In [3]: 1 ke .printProblemTypes()<br>In [3]: 1 ke .printProblemTypes()<br>In [3]: 2 ke .printProblemTypes()<br>In [3]: 1 ke .printProblemTypes()<br>0problem_add<br>1problem_add_advanced<br>2problem_subtract<br>3problem_subtract<br>3problem_multiple_subtracts<br>5problem_multiply<br>6problem_multiply_advanced<br>7problem_multiply_advanced<br>7problem_divide_advanced.<br>8problem_divide_advanced.<br>9problem_divide_advanced.<br>1problem_divide_advanced.<br>1problem_divide_advanced.<br>1problem_divide_advanced.<br>2problem_divide_advanced.<br>3problem_divide_advanced.<br>4problem_divide_advanced.<br>5problem_divide_advanced.<br>5problem_divide_advanced.<br>5problem_divide_advanced.<br>6problem_divide_advanced.<br>7problem_divide_advanced.<br>9problem_divide_advanced.<br>1problem_divide_advanced.<br>1problem_divitat_zero<br>12problem_power_with_zero<br>12problem_power_with_zero<br>13problem_power_with_zero<br>14problem_power_with_zero<br>15problem_twith_zero<br>16problem_fithzero<br>17problem_fithzero<br>18problem_fithzero<br>19problem_fithzero<br>10problem_fithzero<br>11problem_fithzero<br>12problem_fithzero<br>13problem_fithzero<br>14problem_fithzero<br>15problem_fithzero<br>16problem_fithzero<br>17problem_fithzero<br>18problem_fithzero<br>19problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>11problem_fithzero<br>12problem_fithzero<br>13problem_fithzero<br>14problem_fithzero<br>15problem_fithzero<br>16problem_fithzero<br>17problem_fithzero<br>18problem_fithzero<br>19problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithzero<br>10problem_fithz                                                                                                                                                                                       | In [1]: | 1 from xy.math.algebra import AlgebricExpressionManager                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                                                                                                                                                                                         |
| $\begin{bmatrix}  x - y  \\  x - y  \\  x - y  \\ \end{bmatrix}$ The coefficients of variables $v, w, x, y, z$ are:<br>$\begin{bmatrix} v - w - x - y - z \\  -5 - 0 - 8 - 0 - 2 \\  -9 - 1 - 1 - 2 - 6 \end{bmatrix}$ The coefficients of variables $v, w, x, y, z$ are:<br>$\begin{bmatrix} v - w - x - y - z \\  -9 - 1 - 1 - 2 - 6 \end{bmatrix}$ The coefficients of variables $v, w, x, y, z$ are:<br>$\begin{bmatrix} v - w - x - y - z \\  -9 - 1 - 1 - 2 - 6 \end{bmatrix}$ As We have to subtract second expression fromore we will change sign of each coefficient in the the weight change sign of each coefficient in the the test of the coefficient in the test of | In [2]: | 1 ke = AlgebricExpressionManager()                                                                                                                                                                                                                                                                                            | Solution:                                                                                  | We have to subtract second expression from 1<br>-5v + 8x + 2z                                                                                                                                                                                                                                                                           |
| 1. $\_problem\_add\_advanced$ = $ (-8) - (3) $ A2. $\_problem\_subtract$ = $ -13 $ As We have to subtract second expression frowe will change sign of each coefficient in the3. $\_problem\_multiple\_subtracts$ = 13 $\begin{bmatrix} v & w & x & y & z \\ -5 & 0 & 8 & 0 & 2 \\ 9 & 1 & -1 & 2 & -6 \end{bmatrix}$ 6. $\_problem\_multiply\_advanced$ Hence, $ x - y  = y - x$ See r7. $\_problem\_divide\_advanced\_1$ Note:Add the columns:9. $\_problem\_divide\_advanced\_3$ $x + y = -3$ $x - y = -13$ 11. $\_problem\_division\_with\_zero$ $x - y = -13$ $\Rightarrow$ The sum of expressions:12. $\_problem\_nower\_with\_zero$ $y - x = 13$ $\Rightarrow$ The sum of expressions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | In [3]: | 1 ke.printProblemTypes()<br>2                                                                                                                                                                                                                                                                                                 |                                                                                            |                                                                                                                                                                                                                                                                                                                                         |
| = 4v + w + 1x + 2y - 4z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | <pre>1problem_add_advanced<br/>2problem_subtract<br/>3problem_subtract_advanced<br/>4problem_multiple_subtracts<br/>5problem_multiply<br/>6problem_multiply_advanced<br/>7problem_divide<br/>8problem_divide_advanced_1<br/>9problem_divide_advanced_2<br/>10problem_divide_advanced_3<br/>11problem_division_with_zero</pre> | = $ -13 $<br>= 13<br>Hence,<br> x - y  = y - x See r<br>Note:<br>x + y = -3<br>x - y = -13 | $\begin{bmatrix} -9 & -1 & 1 & -2 & 6 \end{bmatrix}$ As We have to subtract second expression frowe will change sign of each coefficient in the $\begin{bmatrix} v & w & x & y & z \\ -5 & 0 & 8 & 0 & 2 \\ 9 & 1 & -1 & 2 & -6 \end{bmatrix}$ Add the columns: $\begin{bmatrix} v & w & x & y & z \\ 4 & 1 & 7 & 2 & -4 \end{bmatrix}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                      | = 4v + w + 1x + 2y - 4z                                                                                                                                                                                                                                                                                                                 |

Find the absolute value of

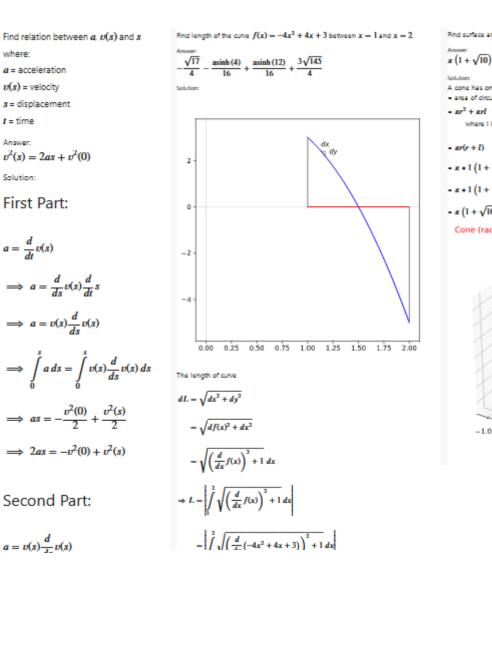
We can rewrite

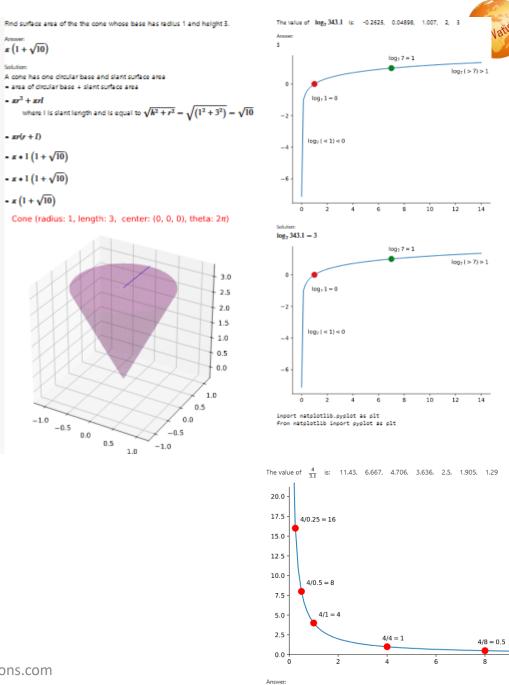
= ----

$$\sqrt[3]{261} = \sqrt[3]{(216 + 45)} \quad \text{where } x = 216 \text{ an}$$

$$f(\Delta x + x) = (\text{Value of function}) + (\text{Rate of ct} x = a \text{ acceleration} x(s) = \text{velocity} x = \text{ displacement} t = \text{time} x = \text{ acceleration} x(s) = \text{velocity} x = \text{ displacement} t = \text{time} x = \text{ acceleration} x(s) = 2as + v^2(0)$$

$$= f(x) + \left(\frac{d}{dx}\sqrt[3]{x}\right) \cdot \Delta x \qquad \qquad \text{Solution:}$$


$$= f(x) + \left(\frac{1}{3x^{\frac{3}{2}}}\right) \cdot \Delta x \qquad \qquad \text{solution:}$$


$$= f(x) + \left(\frac{1}{3x^{\frac{3}{2}}}\right) \cdot \Delta x \qquad \qquad \text{solution:}$$

$$= f(x) + \left(\frac{1}{3x^{\frac{3}{2}}}\right) \cdot \Delta x \qquad \qquad \text{solution:}$$

$$= f(x) + \left(\frac{216^{-\frac{1}{2}}}{3}\right) \cdot (45) \qquad \qquad \text{as } a = \frac{d}{dt}v(s) \frac{d}{dt}s$$

$$= 6 + \frac{5}{12} \qquad \qquad \text{actual value is } \sqrt[3]{261} \qquad \qquad \text{actual value is$$





1.29

+91 75699 33343

info@xcelvations.com

It can also be written as 
$$\sum_{k=0}^{2^6-1}\left(\left(\sqrt[q]{x}
ight)+(-y)\cdot k
ight)$$

 $= x * * (1/9) + x * * (1/9) - y + x * * (1/9) - 2 * y + \dots + x * (1/9) - y * (z * *6 - 2) + x * (1/9) - y * (z * *6 - 1)$ 

Therefore, the series is  $((\sqrt[4]{x}) + (-y) \cdot 0) + ((\sqrt[4]{x}) + (-y) \cdot 1) + ((\sqrt[4]{x}) + (-y) \cdot 2) + \dots + ((\sqrt[4]{x}) + (-y) \cdot (z^{6} - 2)) + ((\sqrt[4]{x}) + (-y) \cdot (z^{6} - 1))$ 

 $t_{z^6} = t_{z^6-1} + (-y) = \left( \left( \sqrt[6]{x} \right) + (-y) \cdot \left( z^6 - 1 \right) \right) + (-y) = \left( \left( \sqrt[6]{x} \right) + (-y) \cdot \left( z^6 \right) \right)$ 

 $t_{z^{6}-1} = t_{z^{6}-2} + (-y) = \left( \left( \sqrt[q]{x} \right) + (-y) \cdot \left( z^{6} - 2 \right) \right) + (-y) = \left( \left( \sqrt[q]{x} \right) + (-y) \cdot \left( z^{6} - 1 \right) \right)$ 

 $t_2 = t_1 + (-y) = \left( \left( \sqrt[4]{x} \right) + (-y) \cdot 1 \right) + (-y) = \left( \left( \sqrt[4]{x} \right) + (-y) \cdot 2 \right)$ 

 $t_1 = t_0 + (-y) = \left( \left( \sqrt[q]{x} \right) + (-y) \cdot 0 \right) + (-y) = \left( \left( \sqrt[q]{x} \right) + (-y) \cdot 1 \right)$ 

 $t_0 = \sqrt[6]{x} = \left( \left( \sqrt[6]{x} \right) + (-y) \cdot 0 \right)$ 

Please note that we start count of terms from 0.

next term = (previous term) + (common difference)  $t_n = t_0 + n *$  common difference

Solution

It can also be written as  $\sum_{x=1}^{2^n-1} \left( \left( \sqrt[q]{x} \right) + (-y) \cdot k \right)$ 

 $((\sqrt[4]{x}) + (-y) \cdot 0) + ((\sqrt[4]{x}) + (-y) \cdot 1) + ((\sqrt[4]{x}) + (-y) \cdot 2) + \dots + ((\sqrt[4]{x}) + (-y) \cdot (z^{6} - 2)) + ((\sqrt[4]{x}) + (-y) \cdot (z^{6} - 1))$ 

Write arithmetic series of  $z^6$  terms, with first term ( $t_0$ ) as  $\sqrt[4]{x}$  and the common difference as -y

| Simplify the followings: Prove that                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{8.0+0.4}{40.0} * \frac{1}{6.0}$                                                                                                                                                   |
| 1 ke.printAnswer() 2 ke.printAnswer()                                                                                                                                                    |
| $\frac{7}{200}$ or $\frac{2}{5} < \log_{10} 3 < \frac{1}{2}$                                                                                                                             |
| 0.035 1<br>2<br>1 ke.printSolution() 3 ke.printSolution()                                                                                                                                |
| $\frac{8.0 + 0.4}{40.0} * \frac{1}{6.0}$ $= \frac{8.4}{40.0} * \frac{1}{6}$ $\Rightarrow 3^{5} > 10^{\frac{2}{5}}$ $\Rightarrow 3^{5} > 10^{\frac{2}{5}}$                                |
| $=\frac{42}{40} * \frac{1}{6}$ Now $\log_{10} 3 ? \frac{1}{2}$ $=\frac{42 * 1}{40 * 5} * \frac{1}{6}$ $\Rightarrow 3 ? 10^{\frac{1}{2}}$ $\Rightarrow 3^{2} < 10, \text{ which is true}$ |
| $\Rightarrow 3^{-} < 10, \text{ which is true}$ $= \frac{42 * 1 * 1}{40 * 5 * 6}$ $= \frac{42}{1200}$ Hence $\frac{2}{5} < \log_{10} 3 < \frac{1}{2}$                                    |
| $=\frac{7}{200}$                                                                                                                                                                         |

+91 75699 33343

Solve the followings:

Q1. ---9

Q2. --9

Q3. 9 \* 9

Q4. -9 \* 9

**O5**. 9 \* - 9

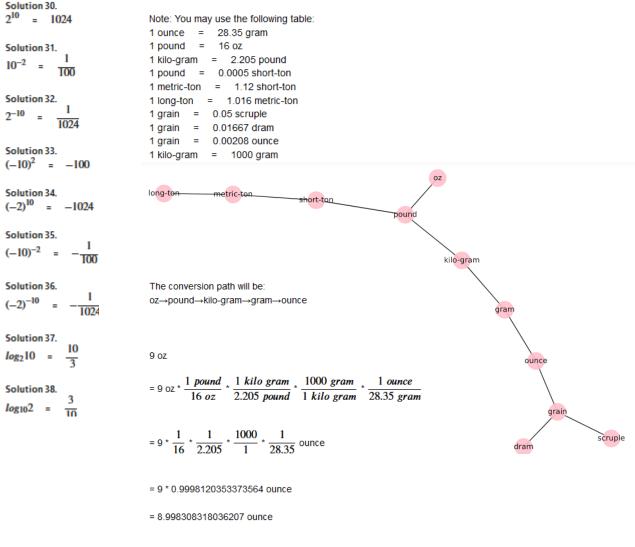
Q6.

-9 \* -9

Q7. --9\*9

Q8. 9 \* - - 9

Q9. --9\*--9


Q10. -9 \* - - 9

Q11. --9\*-9

Solution 28.  $(-2)/(-10) = \frac{1}{5}$ 

Solution 29.  $10^2 = 100$ 

info@xcelvations.com





Convert 9 oz to ounce.

1 ke = NumberUnitManager()

1 ke.getRandomProblem(problem\_type = 4)

| <pre>1 ke.getRandomProblem(problem_type = 11) 2</pre>                                  | <pre>ke.printSolution()</pre>                                                    |                                                         |                                                                                           |          |                         |                                         | wations |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|----------|-------------------------|-----------------------------------------|---------|
| Form 2-letter words from letters r, k, v, g, f, u, x. The words need not be meaningful | Numbers:                                                                         |                                                         |                                                                                           | 100/14   |                         |                                         | XCEIVE  |
| <pre>1 ke.printAnswer() 2</pre>                                                        |                                                                                  |                                                         |                                                                                           | 90/14 💧  |                         |                                         |         |
| 84                                                                                     | $\frac{1}{2}, -\frac{2}{7}, \frac{6}{1}, \frac{1}{1}, \frac{1}{2}, -\frac{2}{1}$ |                                                         |                                                                                           | 80/14    | 6 = 84/14               |                                         |         |
| <pre>1 ke.printSolution() 2</pre>                                                      |                                                                                  |                                                         |                                                                                           | 70/14 🖕  |                         |                                         |         |
| ways of selecting 3 from 9 items $= \binom{9}{3}$                                      | Common Denom                                                                     | inators:                                                |                                                                                           | 60/14 🖕  |                         |                                         |         |
| 9!                                                                                     | Let us make all denominators                                                     | equal to their LCM = $14$                               | Sorted Numbers:                                                                           | 50/14 💧  |                         |                                         |         |
| $= \frac{9!}{(9-3)! \; 3!}$                                                            | $=\frac{1*7}{2*7}, -\frac{2*2}{7*2}, \frac{6*14}{1*14}, \frac{1}{1}$             | $\frac{*14}{1+14}, \frac{1*7}{2*7}, -\frac{2*14}{1*14}$ | $-\frac{28}{14}, -\frac{4}{14}, \frac{7}{14}, \frac{7}{14}, \frac{14}{14}, \frac{84}{14}$ | 40/14 💧  |                         |                                         |         |
| $=\frac{1}{6!3!}$                                                                      |                                                                                  |                                                         |                                                                                           | 30/14    |                         |                                         |         |
| $=\frac{362880}{720*6}$                                                                | $=\frac{7}{14},-\frac{4}{14},\frac{84}{14},\frac{14}{14},\frac{7}{14},-$         | $\frac{.28}{.14}$                                       | $=-\frac{2}{T},-\frac{2}{7},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{T},\frac{1}{T}$  | 20/14    |                         |                                         |         |
| = 84<br>1 ke.getRandomProblem(problem_type= 2)<br>2                                    | Sum:                                                                             | Average:                                                | Median:                                                                                   | 10/14    | 1 = 14/14<br>1/2 = 7/14 | 20/21 = 13/14 (Avg)<br>1/2 = 7/14 (Med) |         |
| Find the ratio of numbers 0.014, 0.031 and 0.58                                        | As we have common denom                                                          | Average of numbers                                      | The number of fractions is 6, an even number.                                             | 0/14     | -2/7 = -4/14            | Are 178 (1100)                          |         |
| 1 ke.printAnswer()                                                                     | $=\frac{80}{14}$                                                                 | $=\frac{\frac{40}{7}}{6}$                               | The middle term is, $\frac{6+1}{2} = \frac{7}{2}$ th term.                                | -10/14   | -2/74/14                |                                         |         |
| 14 : 31 : 580                                                                          | $=\frac{80 / 2}{14 / 2}$                                                         | $=\frac{1}{6}*\frac{40}{7}$                             | Hence, the median will be average of 3rd and 4th terms.                                   | -20/14 💧 |                         |                                         |         |
| <pre>1 ke.printSolution()</pre>                                                        | $=\frac{40}{7}$                                                                  | $=\frac{20}{21}$                                        | Median $=\frac{\frac{1}{2}+\frac{1}{2}}{2}$                                               | -30/14 🌩 | -2 = -28/14             |                                         |         |
| 2                                                                                      | $=\frac{40}{7}$                                                                  |                                                         | $=\frac{1}{2}$                                                                            | -40/14 🖕 |                         |                                         |         |
| The greatest common divisor (GCD) of the numbers 27, 12 and 3 = :                      |                                                                                  |                                                         | $=\frac{1}{2}$                                                                            | -50/14   |                         |                                         |         |
| To get ratio, we have to divide the numbers by the GCD.                                |                                                                                  |                                                         | $=\frac{1}{2}$                                                                            |          |                         |                                         |         |
|                                                                                        |                                                                                  |                                                         |                                                                                           |          |                         |                                         |         |

Ratio of numbers 27, 12 and 3

 $=\frac{27}{3}:\frac{12}{3}:\frac{3}{3}$ 

| 1 [ke.getRandomProblem(problem_type = ?)     Narium has 7 farm. Each farm has 2 garden. Each garden has 60 tree. Each tree has 10 fr cost of maintaining each tree is \$0.5. Answer the following questions:     1. What is the total number of farm?     What is the total number of garden?     What is the total number of true?     What is the total number of fue?     What is the total number of farm?     What is the total number of farm?     What is the total number of farm?     What is the total number of forc?     What is the total as value?     What is the total cost?     What is the net profit? | $\left(\frac{x}{3y} + xy\right)^4$ Answer:<br>$= x^4 y^4 + \frac{4x^4 y^2}{3} + \frac{2x^4}{3} + \frac{4x^4}{27y^2} + \frac{x^4}{81y^4} + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1 ke.printSolution()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3  3  2/y^2  81y^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| The equation of the question are as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1 Mary = 8 garden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| garden = 20 tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left(\frac{x}{3y}+xy\right)^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1 tree = 20 fruit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\left(3y+3y\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| $1 fruit = \frac{1}{12} box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 12<br>1 box = \$800/3 [sell price]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $=\sum_{k=1}^{4}\binom{4}{k}\left(\frac{x}{3y}\right)^{4-k}(xy)^{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| l garden = \$200 [cost price]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sum_{k=0}^{\infty} \left( k \right) \left( 3y \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| . 2m ann - 4700 [sou kuro]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Let us do calculations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= \begin{pmatrix} 4\\0 \end{pmatrix} \cdot \left(\frac{x}{3y}\right)^4 \cdot (xy)^0 + \begin{pmatrix} 4\\1 \end{pmatrix} \cdot \left(\frac{x}{3y}\right)^3 \cdot (xy)^1 + \begin{pmatrix} 4\\2 \end{pmatrix} \cdot \left(\frac{x}{3y}\right)^2 \cdot (xy)^1 + \begin{pmatrix} 4\\2 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} \cdot (xy)^1 + \begin{pmatrix} 4\\2 \end{pmatrix} \cdot (xy)^1 + \begin{pmatrix} 4\\2 \end{pmatrix} \cdot (xy)^1 + \begin{pmatrix} 4\\2 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} \cdot (xy)^1 + \begin{pmatrix} 4\\2 \end{pmatrix} + \begin{pmatrix} 4\\2$ |  |  |
| Total sales revenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0) $(3y)$ $(1)$ $(3y)$ $(2)$ $(3y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| = 8 garden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $x^4$ $x^3$ $x^2$ $x^3$ $x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $= 1 \cdot \frac{x^4}{81y^4} \cdot 1 + 4 \cdot \frac{x^3}{27y^3} \cdot xy + 6 \cdot \frac{x^2}{9y^2} \cdot x^2y^2 + 4 \cdot \frac{x}{3y} \cdot x^3y^3 + 1 \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| $= 8 garden * \frac{20 tree}{earden}$ So, 160 tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| $= 8 garden * \frac{20 tree}{garden} * \frac{20 fruit}{tree} \qquad So, 3200 fruit$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $=\frac{x^4}{81y^4}+\frac{4x^4}{27y^2}+\frac{2x^4}{3}+\frac{4x^4y^2}{3}+x^4y^4+\cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| $= 8 \text{ garden} * \frac{20 \text{ tree}}{\text{garden}} * \frac{20 \text{ fruit}}{\text{tree}} * \frac{box}{12 \text{ fruit}}$ So, 800/3 be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $x^{x} = x^{4}y^{4} + \frac{4x^{4}y^{2}}{3} + \frac{2x^{4}}{3} + \frac{4x^{4}}{27y^{2}} + \frac{x^{4}}{81y^{4}} + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| $= 8 garden * \frac{20 tree}{garden} * \frac{20 fruit}{tree} * \frac{box}{12 fruit} * \frac{box}{box}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>2 2 2 y</i> 0 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $= 8 * 20 * 20 * \frac{1}{12} * \$8$ 5. $z = 3 - 3i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| = \$6400/3 modulus of z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ z  = r =  z  = \sqrt{(3)^2 + (-3)^2} = 4.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| $=\frac{\$200}{garden}$ argument or p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hase of $z = \phi(z) = tan^{-1}\left(\frac{-3}{3}\right) = tan^{-1}\left(\frac{-3}{3}\right) = -0.785 = -45^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| - Now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| $=\frac{\$200}{garden} \ast \$ garden$ (3 - 3 <i>i</i> ) <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| = \$1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| $=(re^{i(2n\pi+\phi)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Net Profit<br>= Total Cost - Total Revenue $= r^4 e^{4(2n\pi+\phi)i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| $= \$6400/3 - \$1600 \qquad 4 (2n\pi + \phi) c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | an be solved for $n = 0, 1, 2, 3,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| = \$1600/3 The distinct va $	heta_0 = (2*0*)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uses are: $+91\ 75699\ 33343$<br>$\pi + -45^{\circ}$ ) * 4 = 180°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

Write expression for arranging k items from a collection of n items

#### $P_k^n$

Note:  $P_k^n$  is read as *n* permutation *k*.

#### Answer: n!(-k+n)!

Solution:

\_

#### Arranging k out of n things.

As we start with *n* things and r places:

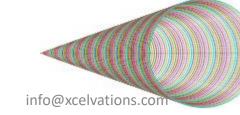
1. For first place, we can choose any item from n things, so we have n choices. 2. For second place, we can choose any item from remainder n - 1 things, so we have

3. For third place, we can choose any item from remainder n - 2 things, so we have n

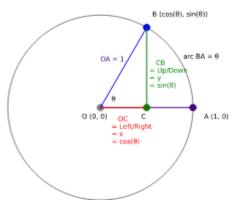
Thus, for 
$$k$$
th place, the choice will be  $n - (k - 1) = n - k + 1$ 

Now, all choices are dependent on each other, so will get a product to get the result.

$$\implies P_k^n = n(n-1)(n-2)\cdots(n-k+2)(n-k+1)$$


$$\implies P_k^n = \frac{n(n-1)(n-2)\cdots(n-k+2)(n-k+1)(n-k)(n-k-1)\cdots*3}{(n-k)(n-k-1)\cdots*3*2*1}$$

$$\implies P_k^n = \frac{n!}{(-k+n)!}$$


TOP 1 IN HP.11HSpace(0, length\_ot\_come, number\_ot\_rings): 1 = 1 x = r \* cos(theta) = r \* nove\_left\_right

y = r \* sin (theta) + r \* nove\_up\_down plt.plot(x,y)

#optional code plt.gea().set\_aspect('equal') plt.amis('off') plt.show()



plt.axis('off') plt.show()



```
Find formula of \cos(A - B) and \sin(A - B)
Answer:
\cos (A - B) = \sin (A) \sin (B) + \cos (A) \cos (B)
                                                                                10.10
\sin (A - B) = \sin (A) \cos (B) - \sin (B) \cos (A)
Solution:
e^{i(A-B)} = e^{iA}e^{-iB}
\implies i \sin (A - B) + \cos (A - B) = (i \sin (A) + \cos (A))(-i \sin (B))
                                                                                Let x = a^{\frac{1}{3}}
 \implies i \sin (A - B) + \cos (A - B) = \sin (A) \sin (B) + i \sin (A) \cos (A - B)
Taking real terms of both sides:
\implies \cos(A - B) = \sin(A)\sin(B) + \cos(A)\cos(B)
Taking imaginary terms of both sides:
\implies sin (A - B) = sin (A) cos (B) - sin (B) cos (A)
Prove
                                                                                Therefore,
e^{i\theta} = \cos{(\theta)} + i\sin{(\theta)}
```

```
Answer:

e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2} - \frac{i\theta^3}{6} + \frac{\theta^4}{24} + \frac{i\theta^3}{120} + O\left(\theta^6\right)
\cos\left(\theta\right) = 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} + O\left(\theta^6\right)
\sin\left(\theta\right) = \theta - \frac{\theta^3}{6} + \frac{\theta^3}{120} + O\left(\theta^6\right)
\implies e^{i\theta} = \cos\left(\theta\right) + i\sin\left(\theta\right)
Solution:

e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2} - \frac{i\theta^3}{6} + \frac{\theta^4}{24} + \frac{i\theta^3}{120} + O\left(\theta^6\right)
\cos\left(\theta\right) = 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} + O\left(\theta^6\right)
```

```
\sin\left(\theta\right) = \theta - \frac{\theta^3}{6} + \frac{\theta^5}{120} + O\left(\theta^6\right)
```

 $\implies e^{i\theta} = \cos(\theta) + i\sin(\theta)$ 

```
Find approximate value of the square root of 1030.
 ke.printAnswer()
 ke.printSolution()
(a+b)^{\frac{1}{3}} = a^{\frac{1}{3}} + \frac{1}{2}a^{\frac{1}{3}-1} \cdot b^{1} + \cdots
               =a^{\frac{1}{3}}+\frac{1}{3}a^{-\frac{2}{3}}\cdot b+\cdots
  \Rightarrow x^2 = a^{\frac{2}{3}}
  \Rightarrow \frac{1}{a^2} = a^{-\frac{2}{3}}
  \Rightarrow (a+b)^{\frac{1}{3}} \approx x + \frac{1}{3} \frac{1}{x^2} \cdot b
The closest perfect 3 power of a number is 1000 = 10^3.
 1030 = 1000 + 30
     \Rightarrow a = 1000
        b = 30
        x = 1000^{\frac{1}{3}} = 10
(1030)^{\frac{1}{3}} = (1000 + 30)^{\frac{1}{3}}
                  =x+\frac{1}{3}\frac{1}{x^{2}}\cdot b
                  = 10 + \frac{1}{3} \cdot \frac{1}{10^2} \cdot 30
                  = 10 + \frac{30}{300}
                  = 10 + 0.1
```

**= 10.1** +91 75699 33343

0. \_problem\_traditional\_division
1. \_problem\_divisible\_by\_multiples\_of\_10
2. \_problem\_divisible\_by\_4\_8
3. \_problem\_divisible\_by\_2\_5
4. \_problem\_divisible\_by\_3\_9
5. \_problem\_divisible\_by\_6
6. \_problem\_divisible\_by\_7\_13\_17\_19\_29

7. problem divisible by 11

```
Is 733100 divisible by 7?
```

```
Answer:
```

False

```
Solution:
```

We will apply last digit reduction meth The reduction factor for 7 is -2.

Step 1: Number = 733100 -2 times of the last digit of 733100 = -2 \* 0 = 0 Remove the last digit from 733100 = 73310

Add 0 from 73310 = 73310 + 0 = 73310

Step 2: Number = 73310 -2 times of the last digit of 73310 = -2 \* 0 = 0 Remove the last digit from 73310 = 7331 Add 0 from 7331 = 7331 + 0 = 7331 Step 3: Number = 7331 -2 times of the last digit of 7331 = -2 \* 1 = -2 Remove the last digit from 7331

info@xcelvations.com



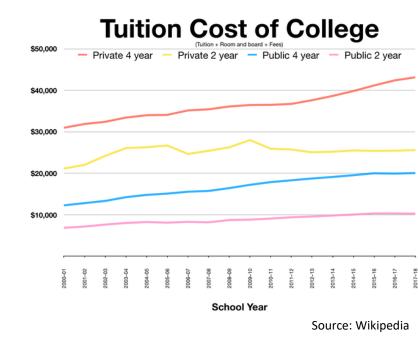
Please note that the actual root is 10.10.



#### Mode of Teaching

- Although our product is designed for self-learning and encourages it, we
  provide it exclusively in an instructor-assisted mode, i.e., through teaching
  sessions only.
- All teaching sessions are conducted online, exclusively through Google Meet.
- Batch sizes may vary from three to six students.
  - We discourage one-to-one sessions, though they are not completely ruled out.
- Online sessions must be attended using a laptop or computer.
  - Mobile devices are not sufficient as students need to write programs.
- For students in primary grades, an individual familiar with using a computer must be present during the sessions for first few days.




#### Why You Should Join Us

- Conceptual learning enables faster and more confident self-learning.
- Attending sessions at school becomes stress-free as students already understand the concepts.
- Strong conceptual foundations empower students to solve problems they may not have previously encountered.
- Study time is significantly reduced.
- Most of our students who have been with us for over three years are at least two grades ahead of their peers.



#### Does It Make Financial Sense?

- Being ahead allows more time for competition preparation, such as the SAT, significantly increasing the chances of securing near 100% scholarships.
- College fees can range between \$120K and \$250K, which means a substantial potential saving.
- Students completing Grade 10 with us often cover nearly all Grade 12 curriculum if they stay for a minimum of four years.
- Being ahead and having more time to prepare for tests increases the likelihood of success.





#### A Case for KM in India

- Students completing Grade 10 with us often cover nearly all Grade 12 material if they stay for a minimum of four years.
- Being ahead and having more time to prepare for tests increases the likelihood of success in competitive exams like IIT/NEET.
- It also results in stress-free, shorter study hours with higher productivity.
- Strong conceptual understanding enables self-learning of advanced topics.





#### How Much It Costs

- Our fee is competitive with other tutorial programs.
- Fees are billed monthly in advance.
- The subscription will renew automatically until canceled.
- To learn about the current entry subscription fee, please reach out to us directly.
- Once enrolled, a student's subscription fee largely remains unchanged throughout their time in the program.
- Special discounts are available for families with multiple siblings or groups enrolling together.



#### **Case Studies**

- Have a look at a few case studies of our students
  - Grade 2
    - https://xcelvations.com/static/pdfs/grade2-a-case-study.pdf
  - Grade 6
    - https://xcelvations.com/static/pdfs/grade6-a-case-study.pdf
  - Grade 9
    - <u>https://xcelvations.com/static/pdfs/grade9-a-case-study.pdf</u>



# Feel free to reach out to us by calling or messaging on WhatsApp at +91 75699 33343, or email us at info@xcelvations.com.

You can also visit our website at <u>http://www.xcelvations.com/</u> for more information.

